Time-Domain Simulations of the Nonlinear Maxwell Equations Using Operator-Exponential Methods

In this paper, we propose a Krylov-subspace-based operator-exponential method for time-domain simulations of the Maxwell equations with general nonlinear polarizations. This includes (classical) chi (2) - or chi (3) - nonlinearities and/or nonlinear coupled system dynamics. As an illustration, we co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2009-02, Vol.57 (2), p.475-483
Hauptverfasser: Pototschnig, M., Niegemann, J., Tkeshelashvili, L., Busch, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a Krylov-subspace-based operator-exponential method for time-domain simulations of the Maxwell equations with general nonlinear polarizations. This includes (classical) chi (2) - or chi (3) - nonlinearities and/or nonlinear coupled system dynamics. As an illustration, we compare the performance of our approach to certain well-known methods for the case of pulse self-steepening in a material with negative Kerr-nonlinearity. For this system, we also develop an appropriate analytical reference solution. In addition, we demonstrate that our approach allows to treat the complex nonlinear dynamics of various physical systems (classical and/or quantum) coupled to electromagnetic fields.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2008.2011181