A Theoretical Framework for Hyperspectral Anomaly Detection Using Spectral and Spatial @@iA Priori@ Information

This letter presents a new theoretical approach for anomaly detection using a priori information about targets. This a priori knowledge deals with the general spectral behavior and the spatial distribution of targets. In this letter, we consider subpixel and isolated targets that are spectrally anom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2007-07, Vol.4 (3), p.436-440
Hauptverfasser: Yver, B, Marion, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a new theoretical approach for anomaly detection using a priori information about targets. This a priori knowledge deals with the general spectral behavior and the spatial distribution of targets. In this letter, we consider subpixel and isolated targets that are spectrally anomalous in one region of the spectrum but not in another. This method is totally different from matched filters that suffer from a relative sensitivity to low errors in the target spectral signature. We incorporate the spectral a priori knowledge in a new detection distance, and we propose a Bayesian approach with a Markovian regularization to suppress the potential targets that do not respect the spatial a priori. The interest of the method is illustrated on simulated data consisting in realistic anomalies that are superimposed on a real HyMap hyperspectral image.
ISSN:1545-598X
DOI:10.1109/LGRS.2007.898080