The surface chemistry of ZnO nanoparticles applied as heterogeneous catalysts in methanol synthesis

Zinc oxide has a variety of applications in catalysis both as support and as active phase for hydrogenation or dehydrogenation reactions. This review provides an overview of the surface chemistry of ZnO nanoparticles concerning the interaction with small molecules such as CO, CO 2, H 2, H 2O, and CH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2009-06, Vol.603 (10), p.1776-1783
Hauptverfasser: Strunk, Jennifer, Kähler, Kevin, Xia, Xinyu, Muhler, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zinc oxide has a variety of applications in catalysis both as support and as active phase for hydrogenation or dehydrogenation reactions. This review provides an overview of the surface chemistry of ZnO nanoparticles concerning the interaction with small molecules such as CO, CO 2, H 2, H 2O, and CH 3OH, which are relevant for the catalytic synthesis of methanol and the water gas shift reaction. These interactions were studied by combining surface-sensitive methods such as infrared spectroscopy, temperature-programmed desorption, and adsorption calorimetry. A thorough understanding of the processes occurring on the different exposed facets of the ZnO particles in an atmosphere of reactive gases was achieved based on the comparison with results obtained in ultra-high vacuum with single-crystalline surfaces, i.e. under well-defined conditions, and by using first-principles calculations.
ISSN:0039-6028
1879-2758
DOI:10.1016/j.susc.2008.09.063