Approximation hardness of deadline-TSP reoptimization

Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2009-05, Vol.410 (21), p.2241-2249
Hauptverfasser: Böckenhauer, Hans-Joachim, Kneis, Joachim, Kupke, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2249
container_issue 21
container_start_page 2241
container_title Theoretical computer science
container_volume 410
creator Böckenhauer, Hans-Joachim
Kneis, Joachim
Kupke, Joachim
description Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm- U (local-modification- U ) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm- U is computationally more tractable than U . While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.
doi_str_mv 10.1016/j.tcs.2009.02.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903641541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397509001650</els_id><sourcerecordid>903641541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNte1NOuk6_dBk-l-AUFBes5ZJNZTNnu1mQr6q83tcWjcxkYnvedmZeQcwoFBVpeL4vBxoIBqAJYkSYHZEQnlcoZU-KQjICDyLmq5DE5iXEJqWRVjoicrteh__QrM_i-y95McB3GmPVN5tC41neYL16es4D9evAr__3LnZKjxrQRz_Z9TF7vbhezh3z-dP84m85zyxUMuWITYWrGsKpLZ1DyaiJLB07UvJRUOlpDZQU0yBrhWI1uImtoVI2M1yiZ4WNytfNNN75vMA565aPFtjUd9puoFfBSUCloIi__JbkQiZJlAukOtKGPMWCj1yF9H740Bb2NUi91ilJvo9TAdJokzcXe3ERr2iaYzvr4J2RUSAUgEnez4zBl8uEx6Gg9dhadD2gH7Xr_z5YfVMaIrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34441356</pqid></control><display><type>article</type><title>Approximation hardness of deadline-TSP reoptimization</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</creator><creatorcontrib>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</creatorcontrib><description>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm- U (local-modification- U ) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm- U is computationally more tractable than U . While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2009.02.016</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Approximation algorithms ; Calculus of variations and optimal control ; Computer science; control theory; systems ; Exact sciences and technology ; Inapproximability ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Reoptimization ; Sciences and techniques of general use ; Theoretical computing ; TSP with deadlines</subject><ispartof>Theoretical computer science, 2009-05, Vol.410 (21), p.2241-2249</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</citedby><cites>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2009.02.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21459004$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Böckenhauer, Hans-Joachim</creatorcontrib><creatorcontrib>Kneis, Joachim</creatorcontrib><creatorcontrib>Kupke, Joachim</creatorcontrib><title>Approximation hardness of deadline-TSP reoptimization</title><title>Theoretical computer science</title><description>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm- U (local-modification- U ) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm- U is computationally more tractable than U . While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Inapproximability</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Reoptimization</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>TSP with deadlines</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNte1NOuk6_dBk-l-AUFBes5ZJNZTNnu1mQr6q83tcWjcxkYnvedmZeQcwoFBVpeL4vBxoIBqAJYkSYHZEQnlcoZU-KQjICDyLmq5DE5iXEJqWRVjoicrteh__QrM_i-y95McB3GmPVN5tC41neYL16es4D9evAr__3LnZKjxrQRz_Z9TF7vbhezh3z-dP84m85zyxUMuWITYWrGsKpLZ1DyaiJLB07UvJRUOlpDZQU0yBrhWI1uImtoVI2M1yiZ4WNytfNNN75vMA565aPFtjUd9puoFfBSUCloIi__JbkQiZJlAukOtKGPMWCj1yF9H740Bb2NUi91ilJvo9TAdJokzcXe3ERr2iaYzvr4J2RUSAUgEnez4zBl8uEx6Gg9dhadD2gH7Xr_z5YfVMaIrw</recordid><startdate>20090517</startdate><enddate>20090517</enddate><creator>Böckenhauer, Hans-Joachim</creator><creator>Kneis, Joachim</creator><creator>Kupke, Joachim</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090517</creationdate><title>Approximation hardness of deadline-TSP reoptimization</title><author>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Inapproximability</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Reoptimization</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>TSP with deadlines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böckenhauer, Hans-Joachim</creatorcontrib><creatorcontrib>Kneis, Joachim</creatorcontrib><creatorcontrib>Kupke, Joachim</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böckenhauer, Hans-Joachim</au><au>Kneis, Joachim</au><au>Kupke, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation hardness of deadline-TSP reoptimization</atitle><jtitle>Theoretical computer science</jtitle><date>2009-05-17</date><risdate>2009</risdate><volume>410</volume><issue>21</issue><spage>2241</spage><epage>2249</epage><pages>2241-2249</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm- U (local-modification- U ) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm- U is computationally more tractable than U . While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2009.02.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2009-05, Vol.410 (21), p.2241-2249
issn 0304-3975
1879-2294
language eng
recordid cdi_proquest_miscellaneous_903641541
source Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Approximation algorithms
Calculus of variations and optimal control
Computer science
control theory
systems
Exact sciences and technology
Inapproximability
Information retrieval. Graph
Mathematical analysis
Mathematics
Miscellaneous
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Reoptimization
Sciences and techniques of general use
Theoretical computing
TSP with deadlines
title Approximation hardness of deadline-TSP reoptimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20hardness%20of%20deadline-TSP%20reoptimization&rft.jtitle=Theoretical%20computer%20science&rft.au=B%C3%B6ckenhauer,%20Hans-Joachim&rft.date=2009-05-17&rft.volume=410&rft.issue=21&rft.spage=2241&rft.epage=2249&rft.pages=2241-2249&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2009.02.016&rft_dat=%3Cproquest_cross%3E903641541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34441356&rft_id=info:pmid/&rft_els_id=S0304397509001650&rfr_iscdi=true