Approximation hardness of deadline-TSP reoptimization
Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modificat...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2009-05, Vol.410 (21), p.2241-2249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2249 |
---|---|
container_issue | 21 |
container_start_page | 2241 |
container_title | Theoretical computer science |
container_volume | 410 |
creator | Böckenhauer, Hans-Joachim Kneis, Joachim Kupke, Joachim |
description | Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.
g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem
U
and such a local modification operation, let
lm-
U
(local-modification-
U
) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.
e.,whether
lm-
U
is computationally more tractable than
U
. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem. |
doi_str_mv | 10.1016/j.tcs.2009.02.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903641541</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397509001650</els_id><sourcerecordid>903641541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNte1NOuk6_dBk-l-AUFBes5ZJNZTNnu1mQr6q83tcWjcxkYnvedmZeQcwoFBVpeL4vBxoIBqAJYkSYHZEQnlcoZU-KQjICDyLmq5DE5iXEJqWRVjoicrteh__QrM_i-y95McB3GmPVN5tC41neYL16es4D9evAr__3LnZKjxrQRz_Z9TF7vbhezh3z-dP84m85zyxUMuWITYWrGsKpLZ1DyaiJLB07UvJRUOlpDZQU0yBrhWI1uImtoVI2M1yiZ4WNytfNNN75vMA565aPFtjUd9puoFfBSUCloIi__JbkQiZJlAukOtKGPMWCj1yF9H740Bb2NUi91ilJvo9TAdJokzcXe3ERr2iaYzvr4J2RUSAUgEnez4zBl8uEx6Gg9dhadD2gH7Xr_z5YfVMaIrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34441356</pqid></control><display><type>article</type><title>Approximation hardness of deadline-TSP reoptimization</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</creator><creatorcontrib>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</creatorcontrib><description>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.
g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem
U
and such a local modification operation, let
lm-
U
(local-modification-
U
) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.
e.,whether
lm-
U
is computationally more tractable than
U
. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2009.02.016</identifier><identifier>CODEN: TCSCDI</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Applied sciences ; Approximation algorithms ; Calculus of variations and optimal control ; Computer science; control theory; systems ; Exact sciences and technology ; Inapproximability ; Information retrieval. Graph ; Mathematical analysis ; Mathematics ; Miscellaneous ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Reoptimization ; Sciences and techniques of general use ; Theoretical computing ; TSP with deadlines</subject><ispartof>Theoretical computer science, 2009-05, Vol.410 (21), p.2241-2249</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</citedby><cites>FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2009.02.016$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21459004$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Böckenhauer, Hans-Joachim</creatorcontrib><creatorcontrib>Kneis, Joachim</creatorcontrib><creatorcontrib>Kupke, Joachim</creatorcontrib><title>Approximation hardness of deadline-TSP reoptimization</title><title>Theoretical computer science</title><description>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.
g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem
U
and such a local modification operation, let
lm-
U
(local-modification-
U
) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.
e.,whether
lm-
U
is computationally more tractable than
U
. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</description><subject>Applied sciences</subject><subject>Approximation algorithms</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Inapproximability</subject><subject>Information retrieval. Graph</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Miscellaneous</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Reoptimization</subject><subject>Sciences and techniques of general use</subject><subject>Theoretical computing</subject><subject>TSP with deadlines</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNte1NOuk6_dBk-l-AUFBes5ZJNZTNnu1mQr6q83tcWjcxkYnvedmZeQcwoFBVpeL4vBxoIBqAJYkSYHZEQnlcoZU-KQjICDyLmq5DE5iXEJqWRVjoicrteh__QrM_i-y95McB3GmPVN5tC41neYL16es4D9evAr__3LnZKjxrQRz_Z9TF7vbhezh3z-dP84m85zyxUMuWITYWrGsKpLZ1DyaiJLB07UvJRUOlpDZQU0yBrhWI1uImtoVI2M1yiZ4WNytfNNN75vMA565aPFtjUd9puoFfBSUCloIi__JbkQiZJlAukOtKGPMWCj1yF9H740Bb2NUi91ilJvo9TAdJokzcXe3ERr2iaYzvr4J2RUSAUgEnez4zBl8uEx6Gg9dhadD2gH7Xr_z5YfVMaIrw</recordid><startdate>20090517</startdate><enddate>20090517</enddate><creator>Böckenhauer, Hans-Joachim</creator><creator>Kneis, Joachim</creator><creator>Kupke, Joachim</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090517</creationdate><title>Approximation hardness of deadline-TSP reoptimization</title><author>Böckenhauer, Hans-Joachim ; Kneis, Joachim ; Kupke, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-9284ab22e7b6dae537856d0d4b36515d1b07c40fe2f4d2bed85b0f9be23be52a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Approximation algorithms</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Inapproximability</topic><topic>Information retrieval. Graph</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Miscellaneous</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Reoptimization</topic><topic>Sciences and techniques of general use</topic><topic>Theoretical computing</topic><topic>TSP with deadlines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böckenhauer, Hans-Joachim</creatorcontrib><creatorcontrib>Kneis, Joachim</creatorcontrib><creatorcontrib>Kupke, Joachim</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böckenhauer, Hans-Joachim</au><au>Kneis, Joachim</au><au>Kupke, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation hardness of deadline-TSP reoptimization</atitle><jtitle>Theoretical computer science</jtitle><date>2009-05-17</date><risdate>2009</risdate><volume>410</volume><issue>21</issue><spage>2241</spage><epage>2249</epage><pages>2241-2249</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><coden>TCSCDI</coden><abstract>Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e.
g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem
U
and such a local modification operation, let
lm-
U
(local-modification-
U
) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i.
e.,whether
lm-
U
is computationally more tractable than
U
. While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2009.02.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3975 |
ispartof | Theoretical computer science, 2009-05, Vol.410 (21), p.2241-2249 |
issn | 0304-3975 1879-2294 |
language | eng |
recordid | cdi_proquest_miscellaneous_903641541 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; EZB-FREE-00999 freely available EZB journals |
subjects | Applied sciences Approximation algorithms Calculus of variations and optimal control Computer science control theory systems Exact sciences and technology Inapproximability Information retrieval. Graph Mathematical analysis Mathematics Miscellaneous Numerical analysis Numerical analysis. Scientific computation Numerical methods in mathematical programming, optimization and calculus of variations Reoptimization Sciences and techniques of general use Theoretical computing TSP with deadlines |
title | Approximation hardness of deadline-TSP reoptimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20hardness%20of%20deadline-TSP%20reoptimization&rft.jtitle=Theoretical%20computer%20science&rft.au=B%C3%B6ckenhauer,%20Hans-Joachim&rft.date=2009-05-17&rft.volume=410&rft.issue=21&rft.spage=2241&rft.epage=2249&rft.pages=2241-2249&rft.issn=0304-3975&rft.eissn=1879-2294&rft.coden=TCSCDI&rft_id=info:doi/10.1016/j.tcs.2009.02.016&rft_dat=%3Cproquest_cross%3E903641541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34441356&rft_id=info:pmid/&rft_els_id=S0304397509001650&rfr_iscdi=true |