Approximation hardness of deadline-TSP reoptimization

Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2009-05, Vol.410 (21), p.2241-2249
Hauptverfasser: Böckenhauer, Hans-Joachim, Kneis, Joachim, Kupke, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an instance of an optimization problem together with an optimal solution, we consider the scenario in which this instance is modified locally. In graph problems, e. g., a singular edge might be removed or added, or an edge weight might be varied, etc. For a problem U and such a local modification operation, let lm- U (local-modification- U ) denote the resulting problem. The question is whether it is possible to exploit the additional knowledge of an optimal solution to the original instance or not, i. e.,whether lm- U is computationally more tractable than U . While positive examples are known e.g. for metric TSP, we give some negative examples here: Metric TSP with deadlines (time windows), if a single deadline or the cost of a single edge is modified, exhibits the same lower bounds on the approximability in these local-modification versions as those currently known for the original problem.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2009.02.016