Robust methods for multivariate data analysis
Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust methods reduce or remove the effect of outlying data points and allow the ‘good’ data to primarily det...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2005-10, Vol.19 (10), p.549-563 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Outliers may hamper proper classical multivariate analysis, and lead to incorrect conclusions. To remedy the problem of outliers, robust methods are developed in statistics and chemometrics. Robust methods reduce or remove the effect of outlying data points and allow the ‘good’ data to primarily determine the result. This article reviews the most commonly used robust multivariate regression and exploratory methods that have appeared since 1996 in the field of chemometrics. Special emphasis is put on the robust versions of chemometric standard tools like PCA and PLS and the corresponding robust estimates of regression, location and scatter on which they are based. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0886-9383 1099-128X |
DOI: | 10.1002/cem.962 |