Optimal Dual-[Formula Omitted] Design in Sub-100-nm PD/SOI and Double-Gate Technologies

Dual-threshold-voltage (V@@dT@) CMOS is an effective way to reduce leakage power in high-performance very-large-scale-integration circuits. In this paper, we explore the technology design space for dual-threshold-voltage transistor design in deep-sub-100-nm technology nodes. We propose a technique o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2008-05, Vol.55 (5), p.1161-1169
Hauptverfasser: Bansal, A, Kim, Jae-Joon, Kim, Keunwoo, Mukhopadhyay, S, Chuang, Ching-Te, Roy, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual-threshold-voltage (V@@dT@) CMOS is an effective way to reduce leakage power in high-performance very-large-scale-integration circuits. In this paper, we explore the technology design space for dual-threshold-voltage transistor design in deep-sub-100-nm technology nodes. We propose a technique of achieving high-V@@dT@ (HVT) devices using thicker gate-sidewall offset spacers to increase the channel length without increasing the printed-gate length. The effectiveness of all the dual-V@@dT@ technology options- increasing channel doping, increasing gate length, and proposed technique of increasing spacer thickness-is analyzed at transistor and basic logic gate level. Results on 65-nm partially depleted silicon-on-insulator and double- gate technologies indicate that the proposed technique yields lower dynamic power consumption and lower performance penalty compared with longer gate length and high body-doping devices. Our proposed technique, however, incurs extra fabrication mask similar to achieving HVT by increasing body doping.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2008.918426