A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain

In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.324-326
1. Verfasser: Lu, Lizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 1
container_start_page 324
container_title Journal of computational and applied mathematics
container_volume 229
creator Lu, Lizheng
description In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.
doi_str_mv 10.1016/j.cam.2008.10.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903634704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042708005591</els_id><sourcerecordid>34466133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</originalsourceid><addsrcrecordid>eNp9kE1uFDEQRi0EEkPgAOy8Iax6Uv5pu1uskogkSJGyyd5yu8vIo257sHuiJKvcgVNwDm7CSeLRRCyzcrn86ivrEfKZwZoBUyebtbPzmgN09b4Gwd-QFet03zCtu7dkBULrBiTX78mHUjYAoHomVwRPaUwL0hSpS7Es2YaIIx3xZ0akGcedW0J9TJ5u0_QQ0xzsVGiI9Axz5THEf0-_z_7-eQyYqU95pumuViXM2wnv6ZjmmviRvPN1DD-9nEfk9uL77flVc31z-eP89LpxUoil6b1VXooWGPbofP1jhzgKx7gemFcceO0OrVRaDHzwfT-0wG1bi9YPAOKIfD3EbnP6tcOymDkUh9NkI6ZdMT0IJaQGWcnjV0khpVJMiAqyA-hyKiWjN9scZpsfDAOzN282ppo3e_P7VjVfZ768hNvi7OSzjS6U_4OctVJ2TFXu24HDquSu-jPFBYwOx5DRLWZM4ZUtzx29mzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34466133</pqid></control><display><type>article</type><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Lizheng</creator><creatorcontrib>Lu, Lizheng</creatorcontrib><description>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2008.10.032</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bernstein polynomials ; Constrained degree reduction ; Degree elevation ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Simplex domain</subject><ispartof>Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.324-326</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</citedby><cites>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2008.10.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21544816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Lizheng</creatorcontrib><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><title>Journal of computational and applied mathematics</title><description>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</description><subject>Bernstein polynomials</subject><subject>Constrained degree reduction</subject><subject>Degree elevation</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Simplex domain</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1uFDEQRi0EEkPgAOy8Iax6Uv5pu1uskogkSJGyyd5yu8vIo257sHuiJKvcgVNwDm7CSeLRRCyzcrn86ivrEfKZwZoBUyebtbPzmgN09b4Gwd-QFet03zCtu7dkBULrBiTX78mHUjYAoHomVwRPaUwL0hSpS7Es2YaIIx3xZ0akGcedW0J9TJ5u0_QQ0xzsVGiI9Axz5THEf0-_z_7-eQyYqU95pumuViXM2wnv6ZjmmviRvPN1DD-9nEfk9uL77flVc31z-eP89LpxUoil6b1VXooWGPbofP1jhzgKx7gemFcceO0OrVRaDHzwfT-0wG1bi9YPAOKIfD3EbnP6tcOymDkUh9NkI6ZdMT0IJaQGWcnjV0khpVJMiAqyA-hyKiWjN9scZpsfDAOzN282ppo3e_P7VjVfZ768hNvi7OSzjS6U_4OctVJ2TFXu24HDquSu-jPFBYwOx5DRLWZM4ZUtzx29mzk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Lu, Lizheng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><author>Lu, Lizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bernstein polynomials</topic><topic>Constrained degree reduction</topic><topic>Degree elevation</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Simplex domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lizheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>229</volume><issue>1</issue><spage>324</spage><epage>326</epage><pages>324-326</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2008.10.032</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.324-326
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_903634704
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
subjects Bernstein polynomials
Constrained degree reduction
Degree elevation
Exact sciences and technology
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Sciences and techniques of general use
Simplex domain
title A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20constrained%20degree%20reduction%20of%20polynomials%20in%20Bernstein%E2%80%93B%C3%A9zier%20form%20over%20simplex%20domain&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Lu,%20Lizheng&rft.date=2009-07-01&rft.volume=229&rft.issue=1&rft.spage=324&rft.epage=326&rft.pages=324-326&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2008.10.032&rft_dat=%3Cproquest_cross%3E34466133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34466133&rft_id=info:pmid/&rft_els_id=S0377042708005591&rfr_iscdi=true