A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain
In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals t...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.324-326 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 1 |
container_start_page | 324 |
container_title | Journal of computational and applied mathematics |
container_volume | 229 |
creator | Lu, Lizheng |
description | In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d
-dimensional simplex domain in
L
2
-norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when
d
≥
2
. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction. |
doi_str_mv | 10.1016/j.cam.2008.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_903634704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042708005591</els_id><sourcerecordid>34466133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</originalsourceid><addsrcrecordid>eNp9kE1uFDEQRi0EEkPgAOy8Iax6Uv5pu1uskogkSJGyyd5yu8vIo257sHuiJKvcgVNwDm7CSeLRRCyzcrn86ivrEfKZwZoBUyebtbPzmgN09b4Gwd-QFet03zCtu7dkBULrBiTX78mHUjYAoHomVwRPaUwL0hSpS7Es2YaIIx3xZ0akGcedW0J9TJ5u0_QQ0xzsVGiI9Axz5THEf0-_z_7-eQyYqU95pumuViXM2wnv6ZjmmviRvPN1DD-9nEfk9uL77flVc31z-eP89LpxUoil6b1VXooWGPbofP1jhzgKx7gemFcceO0OrVRaDHzwfT-0wG1bi9YPAOKIfD3EbnP6tcOymDkUh9NkI6ZdMT0IJaQGWcnjV0khpVJMiAqyA-hyKiWjN9scZpsfDAOzN282ppo3e_P7VjVfZ768hNvi7OSzjS6U_4OctVJ2TFXu24HDquSu-jPFBYwOx5DRLWZM4ZUtzx29mzk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34466133</pqid></control><display><type>article</type><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Lizheng</creator><creatorcontrib>Lu, Lizheng</creatorcontrib><description>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d
-dimensional simplex domain in
L
2
-norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when
d
≥
2
. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2008.10.032</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Bernstein polynomials ; Constrained degree reduction ; Degree elevation ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use ; Simplex domain</subject><ispartof>Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.324-326</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</citedby><cites>FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2008.10.032$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21544816$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Lizheng</creatorcontrib><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><title>Journal of computational and applied mathematics</title><description>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d
-dimensional simplex domain in
L
2
-norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when
d
≥
2
. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</description><subject>Bernstein polynomials</subject><subject>Constrained degree reduction</subject><subject>Degree elevation</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><subject>Simplex domain</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1uFDEQRi0EEkPgAOy8Iax6Uv5pu1uskogkSJGyyd5yu8vIo257sHuiJKvcgVNwDm7CSeLRRCyzcrn86ivrEfKZwZoBUyebtbPzmgN09b4Gwd-QFet03zCtu7dkBULrBiTX78mHUjYAoHomVwRPaUwL0hSpS7Es2YaIIx3xZ0akGcedW0J9TJ5u0_QQ0xzsVGiI9Axz5THEf0-_z_7-eQyYqU95pumuViXM2wnv6ZjmmviRvPN1DD-9nEfk9uL77flVc31z-eP89LpxUoil6b1VXooWGPbofP1jhzgKx7gemFcceO0OrVRaDHzwfT-0wG1bi9YPAOKIfD3EbnP6tcOymDkUh9NkI6ZdMT0IJaQGWcnjV0khpVJMiAqyA-hyKiWjN9scZpsfDAOzN282ppo3e_P7VjVfZ768hNvi7OSzjS6U_4OctVJ2TFXu24HDquSu-jPFBYwOx5DRLWZM4ZUtzx29mzk</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Lu, Lizheng</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090701</creationdate><title>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</title><author>Lu, Lizheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-9fa6f43501e9ecf0068eed3c127b1f6202ecfb54673b2bf99b502a5f995fb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bernstein polynomials</topic><topic>Constrained degree reduction</topic><topic>Degree elevation</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><topic>Simplex domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Lizheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Lizheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>229</volume><issue>1</issue><spage>324</spage><epage>326</epage><pages>324-326</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d
-dimensional simplex domain in
L
2
-norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when
d
≥
2
. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2008.10.032</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2009-07, Vol.229 (1), p.324-326 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_903634704 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
subjects | Bernstein polynomials Constrained degree reduction Degree elevation Exact sciences and technology Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use Simplex domain |
title | A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A42%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20constrained%20degree%20reduction%20of%20polynomials%20in%20Bernstein%E2%80%93B%C3%A9zier%20form%20over%20simplex%20domain&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Lu,%20Lizheng&rft.date=2009-07-01&rft.volume=229&rft.issue=1&rft.spage=324&rft.epage=326&rft.pages=324-326&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2008.10.032&rft_dat=%3Cproquest_cross%3E34466133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=34466133&rft_id=info:pmid/&rft_els_id=S0377042708005591&rfr_iscdi=true |