A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain

In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.324-326
1. Verfasser: Lu, Lizheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when d ≥ 2 . Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2008.10.032