A note on constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain
In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over d -dimensional simplex domain in L 2 -norm equals t...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2009-07, Vol.229 (1), p.324-326 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the paper [H.S. Kim, Y.J. Ahn, Constrained degree reduction of polynomials in Bernstein–Bézier form over simplex domain, J. Comput. Appl. Math. 216 (2008) 14–19], Kim and Ahn proved that the best constrained degree reduction of a polynomial over
d
-dimensional simplex domain in
L
2
-norm equals the best approximation of weighted Euclidean norm of the Bernstein–Bézier coefficients of the given polynomial. In this paper, we presented a counterexample to show that the approximating polynomial of lower degree to a polynomial is virtually non-existent when
d
≥
2
. Furthermore, we provide an assumption to guarantee the existence of solution for the constrained degree reduction. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/j.cam.2008.10.032 |