An incremental learning algorithm for function approximation

This paper presents an incremental learning algorithm for feed-forward neural networks used as approximators of real world data. This algorithm allows neural networks of limited size to be obtained, providing better performances. The algorithm is compared to two of the main incremental algorithms (D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) 2009-08, Vol.40 (8), p.725-730
Hauptverfasser: Bahi, Jacques M., Contassot-Vivier, Sylvain, Sauget, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an incremental learning algorithm for feed-forward neural networks used as approximators of real world data. This algorithm allows neural networks of limited size to be obtained, providing better performances. The algorithm is compared to two of the main incremental algorithms (Dunkin and cascade correlation) in the respective contexts of synthetic data and of real data consisting of radiation doses in homogeneous environments.
ISSN:0965-9978
DOI:10.1016/j.advengsoft.2008.12.018