Comparisons of global cloud ice from MLS, CloudSat, and correlative data sets

Aura Microwave Limb Sounder (MLS) version 2.2 (V2.2) and CloudSat R04 (release 4) ice water content (IWC) and partial‐column ice water path (pIWP) measurements are analyzed and compared to other correlative data sets. The MLS IWC, representing an average over ∼300 × 7 × 4 km3 volume, is retrieved at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. D. Atmospheres 2009-04, Vol.114 (D8), p.n/a
Hauptverfasser: Wu, D. L., Austin, R. T., Deng, M., Durden, S. L., Heymsfield, A. J., Jiang, J. H., Lambert, A., Li, J.-L., Livesey, N. J., McFarquhar, G. M., Pittman, J. V., Stephens, G. L., Tanelli, S., Vane, D. G., Waliser, D. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aura Microwave Limb Sounder (MLS) version 2.2 (V2.2) and CloudSat R04 (release 4) ice water content (IWC) and partial‐column ice water path (pIWP) measurements are analyzed and compared to other correlative data sets. The MLS IWC, representing an average over ∼300 × 7 × 4 km3 volume, is retrieved at 215–268 hPa with precision varying between 0.06 and 1 mg/m3. The MLS pIWP products, representing the partial columns over ∼100 × 7 km2 area with the bottom at ∼8, ∼6, and ∼11 km for 115, 240, and 640 GHz, have estimated precisions of 5, 1.5, and 0.8 g/m2, respectively. CloudSat, on the other hand, shows a minimum detectable sensitivity of −31 dBZ in the reflectivity measurement at 94 GHz. CloudSat IWC is an average over ∼1.8 × 1.4 × 0.5 km3 volume, and its precision varies from 0.4 mg/m3 at 8 km to 1.6 mg/m3 at 12 km. The estimated single‐profile precision for CloudSat IWP is ∼9 g/m2. However, these measurements are associated with relatively large systematic error, mostly due to uncertainties in the retrieval assumptions about microphysics, which lead to relatively poor accuracy compared to measurement precision. To characterize systematic differences among various observations and those derived from models, we employ the normalized probability density function (pdf) in the comparisons. CloudSat IWC shows generally consistent slopes of pdf distribution with in situ observations, particularly at ∼12 km where the in situ data come mostly from long‐leg flights. Despite similar IWC morphology found between MLS and CloudSat observations, CloudSat R04 IWC retrieval is higher compared to MLS, especially at 14–17 km where the MLS technique is not limited by sensitivity saturation. The MLS and CloudSat IWC pdf's agree well in the overlapped sensitivity range with relative difference
ISSN:0148-0227
2156-2202
DOI:10.1029/2008JD009946