A comparative study of combination of Fischer–Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology
This work proposes a one dimensional heterogeneous model to analyze the performance of combination of Fischer–Tropsch synthesis (FTS) reactors in which a fixed-bed reactor is combined with a membrane assisted fluidized-bed reactor. This model is used to compare the performance of the proposed system...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2009-06, Vol.90 (6), p.747-761 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work proposes a one dimensional heterogeneous model to analyze the performance of combination of Fischer–Tropsch synthesis (FTS) reactors in which a fixed-bed reactor is combined with a membrane assisted fluidized-bed reactor. This model is used to compare the performance of the proposed system with a fixed-bed singlestage reactor. In the new concept, the synthesis gas is converted to FT products in two catalytic reactors. The first reactor is water-cooled fixed-bed type while the second reactor is gas-cooled and fluidized-bed. Due to the decrease of H
2/CO to values far from optimum reactants ratio, the membrane concept is suggested to control hydrogen addition. Moreover, a fluidized-bed system has been proposed to solve some observed drawbacks of industrial fixed-bed reactors such as high pressure drop, heat transfer problem and internal mass transfer limitations. This novel concept which has been named fluidized-bed membrane dual-type reactor is used for production of gasoline from synthesis gas. The reactor model is tested against the pilot plant data of the Research Institute of Petroleum Industry. Results show an enhancement in the gasoline yield, a main decrease in CO
2 formation and a favorable temperature profile along the proposed concept. |
---|---|
ISSN: | 0378-3820 1873-7188 |
DOI: | 10.1016/j.fuproc.2009.02.011 |