Electromechanical Mode Online Estimation Using Regularized Robust RLS Methods

This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2008-11, Vol.23 (4), p.1670-1680
Hauptverfasser: Ning Zhou, Trudnowski, D.J., Pierre, J.W., Mittelstadt, W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a regularized robust recursive least squares (R3LS) method for online estimation of power-system electromechanical modes based on synchronized phasor measurement unit (PMU) data. The proposed method utilizes an autoregressive moving average exogenous (ARMAX) model to account for typical measurement data, which includes low-level pseudo-random probing, ambient, and ringdown data. A robust objective function is utilized to reduce the negative influence from nontypical data, which include outliers and missing data. A dynamic regularization method is introduced to help include a priori knowledge about the system and reduce the influence of under-determined problems. Based on a 17-machine simulation model, it is shown through the Monte Carlo method that the proposed R3LS method can estimate and track electromechanical modes by effectively using combined typical and nontypical measurement data.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2008.2002173