Distributed Waveform Generator: A New Circuit Technique for Ultra-Wideband Pulse Generation, Shaping and Modulation
A new circuit technique, the distributed waveform generator (DWG), is proposed for low-power ultra-wideband pulse generation, shaping and modulation. It time-interleaves multiple impulse generators, and uses distributed circuit techniques to combine generated wideband impulses. Built-in pulse shapin...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2009-03, Vol.44 (3), p.808-823 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new circuit technique, the distributed waveform generator (DWG), is proposed for low-power ultra-wideband pulse generation, shaping and modulation. It time-interleaves multiple impulse generators, and uses distributed circuit techniques to combine generated wideband impulses. Built-in pulse shaping can be realized by programming the delay and amplitude of each impulse similar to an FIR filter. Pulse modulation schemes such as on-off keying (OOK) and pulse position modulation (PPM) can be easily applied in this architecture. Two DWG circuit prototypes were implemented in a standard 0.18 mum digital CMOS technology to demonstrate its advantages. A 10-tap, 10 GSample/s, single-polarity DWG prototype achieves a pulse rate of 1 GHz while consuming 50 mW, and demonstrates OOK modulation using 16 Mb/s PRBS data. A 10-tap, 10 GSample/s, dual-polarity DWG prototype was developed to generate UWB pulses compliant with the transmit power emission mask. Based on the latter DWG design, a reconfigurable impulse radio UWB (IR-UWB) transmitter prototype was implemented. The transmitter's pulse rate can be varied from 16 MHz range up to 2.5 GHz. The bandwidth of generated UWB pulses is also variable, and was measured up to 6 GHz (- 10 dB bandwidth). Both OOK and PPM modulation schemes are successfully demonstrated using 32 Mb/s PRBS data. The IR-UWB transmitter achieves a measured energy efficiency of 45 pJ/pulse, independent of pulse rate. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2009.2013770 |