Developmental Process of a Chopstick-Like Hybrid-Structure Two-Fingered Micromanipulator Hand for 3-D Manipulation of Microscopic Objects
The development of a chopstick-like two-fingered micromanipulator based on a hybrid mechanism is presented. The microhand consists of two 3-prismatic-revolute-spherical (PRS) parallel modules connected serially in a mirror image style. Each module has a long glass pipette as an end effector. The dev...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2009-04, Vol.56 (4), p.1121-1135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of a chopstick-like two-fingered micromanipulator based on a hybrid mechanism is presented. The microhand consists of two 3-prismatic-revolute-spherical (PRS) parallel modules connected serially in a mirror image style. Each module has a long glass pipette as an end effector. The development process consists of three phases. In the first phase, analysis and mathematical modeling, a novel solution of the inverse kinematics problem (IKP) of a 3-revolute-prismatic-spherical (RPS) parallel module, is derived and applied with proper modification to the case of 3-PRS of the proposed mechanism. The solution is extended to the two-fingered hybrid mechanism of the microhand. In the optimization and design phase, the optimization of the chosen design parameters of a theoretical 3-PRS parallel module is carried out using two approaches: discretization method and genetic algorithms. Based on the optimal design parameters, a CAD model of the 3-PRS finger module is built, and a complementary optimization step using the ANSYS Workbench program is carried out to determine suitable characteristics of the pin flexure hinge. Finally, the total CAD model of the two-fingered hand is built. In the realization and implementation phase, the description of the hardware system of the two-fingered microhand prototype is presented. The program description, calibration method, practical Jacobian matrices, practical workspace, and error analysis of the prototype are discussed. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2008.2008753 |