Electrochemical desorption of self-assembled monolayers for engineering cellular tissues
Abstract Adherent cells, cell sheets, and spheroids were harvested noninvasively from a culture surface by means of electrochemical desorption of a self-assembled monolayer (SAM) of alkanethiol. The SAM surface was made adhesive by the covalent bonding of Arg-Gly-Asp (RGD)-peptides to the alkanethio...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2009-07, Vol.30 (21), p.3573-3579 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Adherent cells, cell sheets, and spheroids were harvested noninvasively from a culture surface by means of electrochemical desorption of a self-assembled monolayer (SAM) of alkanethiol. The SAM surface was made adhesive by the covalent bonding of Arg-Gly-Asp (RGD)-peptides to the alkanethiol molecules. The application of a negative electrical potential caused the reductive desorption of the SAM, resulting in the detachment of the cells. Using this approach greater than 90% of adherent cells detached within 5 min. Furthermore, this approach was used to obtain two-dimensional (2D) cell sheets. The detached cell sheets consisted of viable cells, which could be easily attached to other cell sheets in succession to form a multilayered cell sheet. Moreover, spheroids of hepatocytes of a uniform diameter were formed in an array of cylindrical cavities at a density of 280 spheroids/cm2 and were harvested by applying a negative electrical potential. This cell manipulation technology could potentially be a useful tool for the fabrication and assembly of building blocks such as cell sheets and spheroids for regenerative medicine and tissue engineering applications. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2009.03.045 |