Character Independent Font Recognition on a Single Chinese Character

A novel algorithm for font recognition on a single unknown Chinese character, independent of the identity of the character, is proposed in this paper. We employ a wavelet transform on the character image and extract wavelet features from the transformed image. After a Box-Cox transformation and LDA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2007-02, Vol.29 (2), p.195-204
Hauptverfasser: Ding, Xiaoqing, Chen, Li, Wu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel algorithm for font recognition on a single unknown Chinese character, independent of the identity of the character, is proposed in this paper. We employ a wavelet transform on the character image and extract wavelet features from the transformed image. After a Box-Cox transformation and LDA (linear discriminant analysis) process, the discriminating features for font recognition are extracted and classified through a MQDF (Modified quadric distance function) classifier with only one prototype for each font class. Our experiments show that our algorithm can achieve a recognition rate of 90.28 percent on a single unknown character and 99.01 percent if five characters are used for font recognition. Compared with existing methods, all of which are based on a text block, our method can provide a higher recognition rate and is more flexible and robust, since it is based on a single unknown character. Additionally, our method demonstrates that it is possible to extract subtle yet discriminative signals embedded in a much larger noisy background
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2007.26