Effect of pipe material and low level disinfectants on biofilm development in a simulated drinking water distribution system

The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Zhejiang University. A. Science 2009-05, Vol.10 (5), p.725-731
Hauptverfasser: Zhou, Ling-ling, Zhang, Yong-ji, Li, Gui-bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficiency of chlorine and chloramines disinfection on biofilm development in a simulated drinking water distribution system was investigated by using heterotrophic bacterial spread plate technique. The experiments were carried out with four annular reactors (ARs) with stainless steel (SS) or copper (Cu) material slides. The results showed that there were fewer bacteria attached to Cu slides without a disinfectant compared with those attached to SS slides. When the water was disinfected with chloramines, the heterotrophic plate counts (HPCs) on the biofilm attached to the Cu slides were significantly lower (by 3.46 log CFU/cm^2) than those attached to the SS slides. Likewise, the biofilm HPC numbers on the Cu slides were slightly lower (by 1.19 log CFU/cm^2) than those on the SS slides disinfected with chlorine. In a quasi-steady state, the HPC levels on Cu slides can be reduced to 3.0 log CFU/cm^2 with chlorine and to about 0.9 log CFU/cm^2 with chloramines. The addition of chloramines resulted in a more efficient reduction of biofilm heterotrophic bacteria than did chlorine. We concluded that the chlorine and chloramines levels usually employed in water distribution system were not sufficient to prevent the growth and development of microbial biofilm. The combination of copper pipe slides and chloramines as the disinfectant was the most efficient combination to bring about diminished bacterial levels.
ISSN:1673-565X
1862-1775
DOI:10.1631/jzus.A0820486