Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells

Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-11, Vol.133 (45), p.18042-18045
Hauptverfasser: Burschka, Julian, Dualeh, Amalie, Kessler, Florian, Baranoff, Etienne, Cevey-Ha, Ngoc-Lê, Yi, Chenyi, Nazeeruddin, Mohammad K, Grätzel, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm–2). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja207367t