Changes in calpain and calpastatin activities of osmotically dehydrated bovine muscle during storage after treatment with calcium

Calpain and calpastatin activities were investigated in calcium-treated beef after osmotic dehydration. Dehydrated beef was soaked in 150 mM calcium chloride solution for 3 h, and then stored for 48 h at 3–4 °C. The untreated sample (control) was soaked in deionized water for 3 h instead of calcium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meat science 2005-05, Vol.70 (1), p.55-61
Hauptverfasser: Gerelt, B., Rusman, H., Nishiumi, T., Suzuki, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Calpain and calpastatin activities were investigated in calcium-treated beef after osmotic dehydration. Dehydrated beef was soaked in 150 mM calcium chloride solution for 3 h, and then stored for 48 h at 3–4 °C. The untreated sample (control) was soaked in deionized water for 3 h instead of calcium chloride solution, after osmotic dehydration. The increase and decrease in the relative activity of crude calpain were observed in the untreated and the calcium-treated meat, respectively, during the storage. When the crude calpains were subjected to DEAE-Sephacel column chromatography, it was found that μ-calpain activity decreased rapidly during the storage in the untreated meat, whereas there was almost no change in the activity of m-calpain during the storage. The decrease of calpastatin activity was moderate compared with the decrease of μ-calpain activity. In the calcium chloride-treated meat, however, no μ-calpain nor calpastatin activities was detectable after 48 h at cold-room temperature, and m-calpain activity after 48 h had decreased to 6.1% of its activity immediately after thawing. It was concluded that 150 mM calcium chloride treatment after osmotic dehydration was sufficient to introduce calcium ions into the meat. In the presence of sufficient calcium, autolysis of calpains and proteolytic degradation of calpastatin, which eventually related to the rate of decrease in calpain and calpastatin activities, clearly seem to be related to a decrease in meat toughness.
ISSN:0309-1740
1873-4138
DOI:10.1016/j.meatsci.2004.11.020