Bee Diversity in Naturalizing Patches of Carolinian Grasslands in Southern Ontario, Canada

The bee fauna (Hymenoptera: Apoidea) of the Niagara Peninsula, at the eastern end of the Carolinian Zone in Ontario, Canada, is poorly known. From April to October 2003, we studied bee abundance and diversity in set-aside grasslands at Brock University and the Glenridge Quarry Naturalization Site in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian entomologist 2011-05, Vol.143 (3), p.279-299
Hauptverfasser: Richards, M.H., Rutgers-Kelly, A., Gibbs, J., Vickruck, J.L., Rehan, S.M., Sheffield, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bee fauna (Hymenoptera: Apoidea) of the Niagara Peninsula, at the eastern end of the Carolinian Zone in Ontario, Canada, is poorly known. From April to October 2003, we studied bee abundance and diversity in set-aside grasslands at Brock University and the Glenridge Quarry Naturalization Site in southern St. Catharines, Ontario. Using three sampling methods (pan traps, sweep nets, and aerial nets), we collected and identified 15 733 specimens of 124 species and morphospecies representing all bee families, except Melittidae, found in North America. Abundance-based diversity estimators suggested bee species richness to be as high as 148 species. There were three seasonal peaks in bee abundance (early spring, late spring, and midsummer) with a lull in activity shortly after the summer solstice. Several indicators suggested substantial impacts of disturbance on the Niagara bee community, including evidence of high dominance by the most abundant species. Comparison of the sampling methods indicated considerable catch variation among taxa; Halictidae and Apidae were dominant in pan trap samples and in sweep—aerial net samples, respectively. However, bee abundances in pan traps and sweep nets were highly correlated, suggesting that both methods fairly sample local bee abundances.
ISSN:0008-347X
1918-3240
DOI:10.4039/n11-010