Experimental study of a supersonic turbulent boundary layer using PIV

Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2011-09, Vol.54 (9), p.1702-1709
Hauptverfasser: He, Lin, Yi, ShiHe, Zhao, YuXin, Tian, LiFeng, Chen, Zhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Particle image velocimetry was applied to the study of the statistical properties and the coherent structures of a fiat plate turbulent boundary layer at Mach 3. The nanoparticles with a good flow-following capability in supersonic flows were adopted as the tracer particles in the present experiments. The results show that the Van Driest transformed mean velocity profile satisfies the incompressible scalings and reveals a log-law region that extends to yld=0.4, which is further away from the wall than that in incompressible boundary layers. The Reynolds stress profiles exhibit a plateau-like region in the log-law region. The hairpin vortices in the streamwise-wall-normal plane are identified using different velocity decompositions, which are similar to the results of the flow visualization via NPLS technique. And multiple hairpin vortices are found moving at nearly the same velocity in different regions of the boundary layer. In the streamwise-spanwise plane, elongated streaky structures are observed in the log-law region, and disappear in the outer region of the boundary layer, which is contrary to the flow visualization results.
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-011-4446-2