Oxidative Stress Parameters in Different Brain Structures Following Lateral Fluid Percussion Injury in the Rat
Free radicals mediated damage of phospholipids, proteins and nucleic acids results in subsequent neuronal degeneration and cell loss. Aim of this study was to evaluate the existence of lipid and protein oxidative damage and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2011-05, Vol.36 (5), p.913-921 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Free radicals mediated damage of phospholipids, proteins and nucleic acids results in subsequent neuronal degeneration and cell loss. Aim of this study was to evaluate the existence of lipid and protein oxidative damage and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in various rat brain structures 24 h after lateral fluid percussion brain injury (LFPI). Parietal cortex, hippocampus, thalamus, entorhinal cortex, and cerebellum from the ipsilateral hemisphere were processed for analyses of the thiobarbituric acid reactive substances (TBARS) and oxidized protein levels as well as for the SOD and GSH-Px activities. Immunohistochemical detection of oxidized proteins was also performed. Results of our study showed that LFPI caused significant oxidative stress in the parietal cortex and hippocampus while other brain regions tested in this study were not oxidatively altered by LFPI. GSH-Px activities were significantly increased in the parietal cortex and hippocampus, while the SOD activities remained unchanged following LFPI in all regions investigated. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/s11064-011-0424-3 |