Form of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145 and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progenitors, and some cholinergic axon terminals
Abstract Compelling lines of evidence indicate that overexpression of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) in subjects with trisomy 21 (Down syndrome[DS]) contributes to the abnormal structure and function of the DS brain. In the present study, we used a novel,...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2011-11, Vol.195, p.112-127 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Compelling lines of evidence indicate that overexpression of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) in subjects with trisomy 21 (Down syndrome[DS]) contributes to the abnormal structure and function of the DS brain. In the present study, we used a novel, phospho-dependent antibody recognizing DYRK1A only with nonphosphorylated tyrosine 145 and 147 (DYRK1A Tyr-145/147P− ), to investigate the expression pattern of this DYRK1A species in trisomic and disomic human and mouse brains. Immunoblotting and dephosphorylation experiments demonstrated higher levels of DYRK1A Tyr-145/147P− in postnatal trisomic brains in comparison with controls (by ∼40%) than those of the DYRK1A visualized by three other N- and C-terminally directed antibodies to DYRK1A. By immunofluorescence, the immunoreactivity to DYRK1A Tyr-145/147P− was the strongest in the nuclei of astroglial cells, which contrasted with the predominantly neuronal localization of DYRK1A visualized by the three other antibodies to DYRK1A we used. In addition, DYRK1A Tyr-145/147P− was enriched in the nuclei of neuronal progenitors and newly born neurons in the adult hippocampal proliferative zone and also occurred in some cholinergic axonal terminals. Our data show a distinctive expression pattern of DYRK1A forms nonphosphorylated at Tyr-145 and Tyr-147 in the brain tissue and suggest that DS subjects may exhibit not only upregulation of total DYRK1A, but also more subtle differences in phosphorylation levels of this kinase in comparison with control individuals. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2011.08.028 |