Intercalary muscle cell renewal in planarian pharynx
Planarian cell renewal is achieved as a result of proliferation and differentiation of totipotent undifferentiated cells called neoblasts. The absence of mitosis within the planarian pharynx raises the question as to how cell renewal and growth occur within this organ. Two explanations have been adv...
Gespeichert in:
Veröffentlicht in: | Development genes and evolution 1999-04, Vol.209 (4), p.249-253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Planarian cell renewal is achieved as a result of proliferation and differentiation of totipotent undifferentiated cells called neoblasts. The absence of mitosis within the planarian pharynx raises the question as to how cell renewal and growth occur within this organ. Two explanations have been advanced: one proposes that new cells remain close to the base of the pharynx, which then grows by distal displacement of older cells, and the other suggests that the new cells are intercalated between older cells throughout the pharynx. The second alternative, however, does not explain how new cells enter the pharynx or how they reach their final destination. In this study of myosin heavy-chain gene expression within planarian pharynx, a row of differentiating myocytes was detected all along the pharynx parenchyma. According to the hybridization pattern, all these myocytes appeared to be at early stages of differentiation. These data favour an intercalary model for muscle cell renewal within the pharynx. According to this model, neoblasts at the base of the pharynx would enter the pharynx, where they would start differentiation to myocytes, move to the subepithelial musculature and intercalate between the old muscle cells. The possible application of this intercalary model to other pharynx cell types is also discussed. |
---|---|
ISSN: | 0949-944X 1432-041X |
DOI: | 10.1007/s004270050249 |