Colony demographics of rare soldier-polymorphic worker caste systems in Pheidole ants (Hymenoptera, Formicidae)
Nearly all species in the ant genus Pheidole have dimorphic workers, with distinct small minors and larger soldiers. The size range of both castes is typically narrow. Just seven described species are soldier-polymorphic, with a broad soldier size range. Here, we characterize worker caste allocation...
Gespeichert in:
Veröffentlicht in: | Insectes sociaux 2011, Vol.58 (4), p.539-549 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nearly all species in the ant genus Pheidole have dimorphic workers, with distinct small minors and larger soldiers. The size range of both castes is typically narrow. Just seven described species are soldier-polymorphic, with a broad soldier size range. Here, we characterize worker caste allocation and demography in the soldier-polymorphic P. obtusospinosa, P. rhea, and P. tepicana, and the dimorphic P. spadonia for comparison. The head allometry of soldiers in soldier-polymorphic species is strongly positive and that of dimorphic species is negative. Among soldier-polymorphic species, the soldier castes differ from each other in the degree of positive allometry. In addition, they differ in the number of size modes: P. obtusospinosa and P. rhea have two and P. tepicana has one. During colony ontogeny, P. obtusospinosa first has one mode and develops the second mode much later, while P. rhea produces multiple modes throughout. We also characterize worker caste systems based on the biomass allocation. For all three soldier-polymorphic species, the majority of soldiers are small soldiers. Pheidole obtusospinosa and P. rhea allocate roughly equal biomass to the two soldier classes, while P. tepicana allocates little to supersoldiers based on both biomass and caste ratio. These findings illustrate the interplay among caste ratios, biomass allocation, size frequency distributions, and allometry in the evolution of different worker caste systems. We conclude that soldier-polymorphic species may have evolved convergently in response to broad-scale factors, but differences among them suggest selection pressures in small-scale environments have been different. |
---|---|
ISSN: | 0020-1812 1420-9098 |
DOI: | 10.1007/s00040-011-0176-8 |