Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species

A somatic embryogenesis (SE) protocol was established for the regeneration of Lilium ledebourii (Baker) Boiss. whole plants using new vegetative bulblet microscales and transverse thin cell layers (tTCLs) of young bulblet roots as the explant sources. Bulblets were induced from bulb scale explants c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2010-08, Vol.102 (2), p.229-235
Hauptverfasser: Bakhshaie, Mehdi, Babalar, Mesbah, Mirmasoumi, Masoud, Khalighi, Ahmad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A somatic embryogenesis (SE) protocol was established for the regeneration of Lilium ledebourii (Baker) Boiss. whole plants using new vegetative bulblet microscales and transverse thin cell layers (tTCLs) of young bulblet roots as the explant sources. Bulblets were induced from bulb scale explants cultured for at least 3 months in the dark on Murashige and Skoog (MS) medium containing 3% sucrose, 0.8% agar, and different concentrations of α-naphthaleneacetic acid (NAA), 6-benzyladenine (BA), and thidiazuron. Embryo-like structures were obtained from tTCL explants of 3-month-old bulblets (excised from bulb scale explants) following culture on solid MS medium containing 3% sucrose and various concentrations of NAA and BA for 3 months in the dark. Both the explant source and the type of plant growth regulators affected the differentiation of somatic embryos. The highest percentage (65.55%) of embryogenesis was obtained from bulblet microscale tTCLs cultured on solid MS medium containing 0.54 μM NAA and 0.44 μM BA. Plants with normal shoots and roots were obtained following a 3-month culture of embryos on growth regulator-free MS medium at 25 ± 1°C under a 16/8-h light/dark photoperiod (light intensity 40 μmol m⁻² s⁻¹, cool-white fluorescent light). The plants were successfully acclimatized in the growth chamber.
ISSN:0167-6857
1573-5044
DOI:10.1007/s11240-010-9726-4