Ploidy stability of somatic embryogenesis-derived Passiflora cincinnata Mast. plants as assessed by flow cytometry

In this study, flow cytometric analysis was used to evaluate the genetic stability of Passiflora cincinnata Mast. plants regenerated via primary and secondary somatic embryogenesis. Embryogenic calli obtained from culturing zygotic embryos on Murashige and Skoog (MS) medium containing 18.1 μM 2,4-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2010-10, Vol.103 (1), p.71-79
Hauptverfasser: Pinto, Daniela Lopes Paim, de Almeida Barros, Beatriz, Viccini, Lyderson Facio, de Campos, José Marcello Salabert, Silva, Maurecilne Lemes da, Otoni, Wagner Campos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, flow cytometric analysis was used to evaluate the genetic stability of Passiflora cincinnata Mast. plants regenerated via primary and secondary somatic embryogenesis. Embryogenic calli obtained from culturing zygotic embryos on Murashige and Skoog (MS) medium containing 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 μM benzyladenine (BA) were transferred to differentiation medium. Torpedo and cotyledonary embryos were obtained. These primary embryos were maintained on differentiation medium to generate secondary embryos. Conversion of primary and secondary embryos yielded 305 and 138 normal plants, respectively. Almost 90% of plantlets survived following acclimatization. Flow cytometric analysis revealed that seed-derived plants had on average 3.01 pg nuclear DNA (2C), and all plants, except for a single plant regenerated via primary embryogenesis, maintained their ploidy. This single plant contained more than twice the average DNA content: 6.21 pg (4C). Epidermal stomata of leaves of the tetraploid plant were larger but lower in density than those of diploid plants, indicating that stomatal characteristics are useful in distinguishing between diploid and tetraploid plants of passion fruit. In summary, the procedure we employed to regenerated P. cincinnata plants via somatic embryogenesis generated mostly genetically true-to-type plants.
ISSN:0167-6857
1573-5044
DOI:10.1007/s11240-010-9756-y