Enhanced Saccharification of Rice Straw Using Hypochlorite-hydrogen Peroxide
Rice straw is a lignocellulosic biomass, and has been recognized as a renewable organic substance and alternative energy source. In this study, rice straw was pretreated with hypochlorite-hydrogen peroxide (Ox-B) solution. The optimal pretreatment conditions were determined via response surface meth...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioprocess engineering 2011-04, Vol.16 (2), p.273-281 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rice straw is a lignocellulosic biomass, and has been recognized as a renewable organic substance and alternative energy source. In this study, rice straw was pretreated with hypochlorite-hydrogen peroxide (Ox-B) solution. The optimal pretreatment conditions were determined via response surface methodology, and the pretreated rice straw was hydrolyzed with exo-glucanase, endoglucanase, hemicellulase, and β-glucosidase Accellerase 1000∨TM (endo-glucanase equivalent activity of 1,250 carboxy methyl cellulose (CMC) U/g of rice straw pretreated for 24 h). The optimal conditions were as follows: 60 min pretreatment using Ox-B solution containing 0.6% hypochlorite and 25% hydrogen peroxide for 1 g of rice straw in a total reaction volume of 240 mL. Under these conditions, 406.8 mg of D-glucose and 224.0 mg of D-xylose were obtained from 1 g of rice straw. The fermentation of enzymatic hydrolysates containing 8.14 g/L D-glucose and 4.49 g/L D-xylose with Pichia stipitis generated 3.65 g/L of ethanol with a corresponding yield of 0.37 g/g. The maximum possible ethanol conversion rate is 72.54%. |
---|---|
ISSN: | 1226-8372 1976-3816 |
DOI: | 10.1007/s12257-010-0262-1 |