Variations of the dipole magnetic moment of the sun during the solar activity cycle

Observations of the large-scale solar magnetic field (synoptic maps) and measurements of the magnetic field of the Sun as a star (the total magnetic field) are used to determine the dipole magnetic moment and direction of the dipole field for three successive solar cycles. Both the magnetic moment a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy reports 2006-11, Vol.50 (11), p.926-935
Hauptverfasser: Livshits, I M, Obridko, V N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Observations of the large-scale solar magnetic field (synoptic maps) and measurements of the magnetic field of the Sun as a star (the total magnetic field) are used to determine the dipole magnetic moment and direction of the dipole field for three successive solar cycles. Both the magnetic moment and its vertical and horizontal components vary regularly during the cycle, but never disappear completely. A wavelet analysis of the total magnetic field shows that the amplitude of the 27-day variations of this field is very closely related to the magnetic moment of the horizontal dipole. The reversal of the global dipole field corresponds to a change in the inclination of its axis and occurs in a series of steps lasting one to two years rather than continuously. Before the onset of the reversal, the dipole axis precesses relative to the solar rotational axis, then shifts in a meridianal plane, reaching very low latitudes, where a substantial shift in longitude then begins. These results are discussed in connection with helioseismological data indicating the existence of oscillations with a period of about 1.3 yr and properties of dynamo processes for the case of an inclined rotator.
ISSN:1063-7729
1562-6881
DOI:10.1134/S1063772906110060