Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies

Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2003-07, Vol.38 (7), p.1250-1260
Hauptverfasser: Badaroglu, M., Donnay, S., De Man, H.J., Zinzius, Y.A., Gielen, G.G.E., Sansen, W., Fonden, T., Signell, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1260
container_issue 7
container_start_page 1250
container_title IEEE journal of solid-state circuits
container_volume 38
creator Badaroglu, M.
Donnay, S.
De Man, H.J.
Zinzius, Y.A.
Gielen, G.G.E.
Sansen, W.
Fonden, T.
Signell, S.
description Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.
doi_str_mv 10.1109/JSSC.2003.813254
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_901716407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1208476</ieee_id><sourcerecordid>2592331131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</originalsourceid><addsrcrecordid>eNp9kb2P1DAQxSMEEstBj0RjUUBDlrGdxE652uN7geL46izHmez6yNrBdjiu4l_HqyCQKKjGo_ebNx69orhPYU0ptE9fX1xs1wyAryXlrK5uFCta17Kkgn-5WawAqCzbrN8u7sR4mduqknRV_Hzrexyt2xPteoI_Jgz2iC7pkXzPz8Eanax3xA8kzl1MQSckztuIZI8Ow6JaRzRhDMo3-6xH8nm3eUfidUx4LL0rzcFO5MqmAznOY7LTiNlsmkaL8W5xa9BjxHu_61nx8fmzD9uX5e79i1fbza40XMpU9oIhb7FuOQXZDT10ICgTgna9gdowYJoLMQy8kaApN1qzoeZacDTaVD3ws-LJ4huvcJo7NeUzdbhWXlt1bj9tlA979TUdFGMNqzP-eMGn4L_NGJM62mhwHLVDP0fVAhW0qUBk8tF_SSZ5LZqGZ_DhP-Cln4PLR6s2LxWVaKoMwQKZ4GMMOPz5KAV1ylmdclannNWScx55sIxYRPyLM5DZkf8Ccy2k_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922674764</pqid></control><display><type>article</type><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><source>IEEE Electronic Library (IEL)</source><creator>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</creator><creatorcontrib>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</creatorcontrib><description>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</description><identifier>ISSN: 0018-9200</identifier><identifier>ISSN: 1558-173X</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2003.813254</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clocks ; crosstalk ; design ; digital circuits ; Energy consumption ; Estimates ; Frequency estimation ; integrated circuit modeling ; Local area networks ; mixed analog-digital ICs ; mixed-signal ics ; Noise ; Noise generators ; Noise measurement ; power distribution ; Power system modeling ; reduction ; Resonance ; resonance analysis ; Semiconductor device modeling ; substrate noise ; Switching ; System on chip ; System-on-a-chip ; Telecommunications ; Wireless communication ; Wireless LAN</subject><ispartof>IEEE journal of solid-state circuits, 2003-07, Vol.38 (7), p.1250-1260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</citedby><cites>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1208476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1208476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-22625$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Badaroglu, M.</creatorcontrib><creatorcontrib>Donnay, S.</creatorcontrib><creatorcontrib>De Man, H.J.</creatorcontrib><creatorcontrib>Zinzius, Y.A.</creatorcontrib><creatorcontrib>Gielen, G.G.E.</creatorcontrib><creatorcontrib>Sansen, W.</creatorcontrib><creatorcontrib>Fonden, T.</creatorcontrib><creatorcontrib>Signell, S.</creatorcontrib><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</description><subject>Clocks</subject><subject>crosstalk</subject><subject>design</subject><subject>digital circuits</subject><subject>Energy consumption</subject><subject>Estimates</subject><subject>Frequency estimation</subject><subject>integrated circuit modeling</subject><subject>Local area networks</subject><subject>mixed analog-digital ICs</subject><subject>mixed-signal ics</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Noise measurement</subject><subject>power distribution</subject><subject>Power system modeling</subject><subject>reduction</subject><subject>Resonance</subject><subject>resonance analysis</subject><subject>Semiconductor device modeling</subject><subject>substrate noise</subject><subject>Switching</subject><subject>System on chip</subject><subject>System-on-a-chip</subject><subject>Telecommunications</subject><subject>Wireless communication</subject><subject>Wireless LAN</subject><issn>0018-9200</issn><issn>1558-173X</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb2P1DAQxSMEEstBj0RjUUBDlrGdxE652uN7geL46izHmez6yNrBdjiu4l_HqyCQKKjGo_ebNx69orhPYU0ptE9fX1xs1wyAryXlrK5uFCta17Kkgn-5WawAqCzbrN8u7sR4mduqknRV_Hzrexyt2xPteoI_Jgz2iC7pkXzPz8Eanax3xA8kzl1MQSckztuIZI8Ow6JaRzRhDMo3-6xH8nm3eUfidUx4LL0rzcFO5MqmAznOY7LTiNlsmkaL8W5xa9BjxHu_61nx8fmzD9uX5e79i1fbza40XMpU9oIhb7FuOQXZDT10ICgTgna9gdowYJoLMQy8kaApN1qzoeZacDTaVD3ws-LJ4huvcJo7NeUzdbhWXlt1bj9tlA979TUdFGMNqzP-eMGn4L_NGJM62mhwHLVDP0fVAhW0qUBk8tF_SSZ5LZqGZ_DhP-Cln4PLR6s2LxWVaKoMwQKZ4GMMOPz5KAV1ylmdclannNWScx55sIxYRPyLM5DZkf8Ccy2k_A</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Badaroglu, M.</creator><creator>Donnay, S.</creator><creator>De Man, H.J.</creator><creator>Zinzius, Y.A.</creator><creator>Gielen, G.G.E.</creator><creator>Sansen, W.</creator><creator>Fonden, T.</creator><creator>Signell, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20030701</creationdate><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><author>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Clocks</topic><topic>crosstalk</topic><topic>design</topic><topic>digital circuits</topic><topic>Energy consumption</topic><topic>Estimates</topic><topic>Frequency estimation</topic><topic>integrated circuit modeling</topic><topic>Local area networks</topic><topic>mixed analog-digital ICs</topic><topic>mixed-signal ics</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Noise measurement</topic><topic>power distribution</topic><topic>Power system modeling</topic><topic>reduction</topic><topic>Resonance</topic><topic>resonance analysis</topic><topic>Semiconductor device modeling</topic><topic>substrate noise</topic><topic>Switching</topic><topic>System on chip</topic><topic>System-on-a-chip</topic><topic>Telecommunications</topic><topic>Wireless communication</topic><topic>Wireless LAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badaroglu, M.</creatorcontrib><creatorcontrib>Donnay, S.</creatorcontrib><creatorcontrib>De Man, H.J.</creatorcontrib><creatorcontrib>Zinzius, Y.A.</creatorcontrib><creatorcontrib>Gielen, G.G.E.</creatorcontrib><creatorcontrib>Sansen, W.</creatorcontrib><creatorcontrib>Fonden, T.</creatorcontrib><creatorcontrib>Signell, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badaroglu, M.</au><au>Donnay, S.</au><au>De Man, H.J.</au><au>Zinzius, Y.A.</au><au>Gielen, G.G.E.</au><au>Sansen, W.</au><au>Fonden, T.</au><au>Signell, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2003-07-01</date><risdate>2003</risdate><volume>38</volume><issue>7</issue><spage>1250</spage><epage>1260</epage><pages>1250-1260</pages><issn>0018-9200</issn><issn>1558-173X</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2003.813254</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2003-07, Vol.38 (7), p.1250-1260
issn 0018-9200
1558-173X
1558-173X
language eng
recordid cdi_proquest_miscellaneous_901716407
source IEEE Electronic Library (IEL)
subjects Clocks
crosstalk
design
digital circuits
Energy consumption
Estimates
Frequency estimation
integrated circuit modeling
Local area networks
mixed analog-digital ICs
mixed-signal ics
Noise
Noise generators
Noise measurement
power distribution
Power system modeling
reduction
Resonance
resonance analysis
Semiconductor device modeling
substrate noise
Switching
System on chip
System-on-a-chip
Telecommunications
Wireless communication
Wireless LAN
title Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20experimental%20verification%20of%20substrate%20noise%20generation%20in%20a%20220-Kgates%20WLAN%20system-on-chip%20with%20multiple%20supplies&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Badaroglu,%20M.&rft.date=2003-07-01&rft.volume=38&rft.issue=7&rft.spage=1250&rft.epage=1260&rft.pages=1250-1260&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2003.813254&rft_dat=%3Cproquest_RIE%3E2592331131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922674764&rft_id=info:pmid/&rft_ieee_id=1208476&rfr_iscdi=true