Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies
Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical t...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2003-07, Vol.38 (7), p.1250-1260 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1260 |
---|---|
container_issue | 7 |
container_start_page | 1250 |
container_title | IEEE journal of solid-state circuits |
container_volume | 38 |
creator | Badaroglu, M. Donnay, S. De Man, H.J. Zinzius, Y.A. Gielen, G.G.E. Sansen, W. Fonden, T. Signell, S. |
description | Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os. |
doi_str_mv | 10.1109/JSSC.2003.813254 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_901716407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1208476</ieee_id><sourcerecordid>2592331131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</originalsourceid><addsrcrecordid>eNp9kb2P1DAQxSMEEstBj0RjUUBDlrGdxE652uN7geL46izHmez6yNrBdjiu4l_HqyCQKKjGo_ebNx69orhPYU0ptE9fX1xs1wyAryXlrK5uFCta17Kkgn-5WawAqCzbrN8u7sR4mduqknRV_Hzrexyt2xPteoI_Jgz2iC7pkXzPz8Eanax3xA8kzl1MQSckztuIZI8Ow6JaRzRhDMo3-6xH8nm3eUfidUx4LL0rzcFO5MqmAznOY7LTiNlsmkaL8W5xa9BjxHu_61nx8fmzD9uX5e79i1fbza40XMpU9oIhb7FuOQXZDT10ICgTgna9gdowYJoLMQy8kaApN1qzoeZacDTaVD3ws-LJ4huvcJo7NeUzdbhWXlt1bj9tlA979TUdFGMNqzP-eMGn4L_NGJM62mhwHLVDP0fVAhW0qUBk8tF_SSZ5LZqGZ_DhP-Cln4PLR6s2LxWVaKoMwQKZ4GMMOPz5KAV1ylmdclannNWScx55sIxYRPyLM5DZkf8Ccy2k_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922674764</pqid></control><display><type>article</type><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><source>IEEE Electronic Library (IEL)</source><creator>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</creator><creatorcontrib>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</creatorcontrib><description>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</description><identifier>ISSN: 0018-9200</identifier><identifier>ISSN: 1558-173X</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2003.813254</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clocks ; crosstalk ; design ; digital circuits ; Energy consumption ; Estimates ; Frequency estimation ; integrated circuit modeling ; Local area networks ; mixed analog-digital ICs ; mixed-signal ics ; Noise ; Noise generators ; Noise measurement ; power distribution ; Power system modeling ; reduction ; Resonance ; resonance analysis ; Semiconductor device modeling ; substrate noise ; Switching ; System on chip ; System-on-a-chip ; Telecommunications ; Wireless communication ; Wireless LAN</subject><ispartof>IEEE journal of solid-state circuits, 2003-07, Vol.38 (7), p.1250-1260</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</citedby><cites>FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1208476$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1208476$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-22625$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Badaroglu, M.</creatorcontrib><creatorcontrib>Donnay, S.</creatorcontrib><creatorcontrib>De Man, H.J.</creatorcontrib><creatorcontrib>Zinzius, Y.A.</creatorcontrib><creatorcontrib>Gielen, G.G.E.</creatorcontrib><creatorcontrib>Sansen, W.</creatorcontrib><creatorcontrib>Fonden, T.</creatorcontrib><creatorcontrib>Signell, S.</creatorcontrib><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</description><subject>Clocks</subject><subject>crosstalk</subject><subject>design</subject><subject>digital circuits</subject><subject>Energy consumption</subject><subject>Estimates</subject><subject>Frequency estimation</subject><subject>integrated circuit modeling</subject><subject>Local area networks</subject><subject>mixed analog-digital ICs</subject><subject>mixed-signal ics</subject><subject>Noise</subject><subject>Noise generators</subject><subject>Noise measurement</subject><subject>power distribution</subject><subject>Power system modeling</subject><subject>reduction</subject><subject>Resonance</subject><subject>resonance analysis</subject><subject>Semiconductor device modeling</subject><subject>substrate noise</subject><subject>Switching</subject><subject>System on chip</subject><subject>System-on-a-chip</subject><subject>Telecommunications</subject><subject>Wireless communication</subject><subject>Wireless LAN</subject><issn>0018-9200</issn><issn>1558-173X</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb2P1DAQxSMEEstBj0RjUUBDlrGdxE652uN7geL46izHmez6yNrBdjiu4l_HqyCQKKjGo_ebNx69orhPYU0ptE9fX1xs1wyAryXlrK5uFCta17Kkgn-5WawAqCzbrN8u7sR4mduqknRV_Hzrexyt2xPteoI_Jgz2iC7pkXzPz8Eanax3xA8kzl1MQSckztuIZI8Ow6JaRzRhDMo3-6xH8nm3eUfidUx4LL0rzcFO5MqmAznOY7LTiNlsmkaL8W5xa9BjxHu_61nx8fmzD9uX5e79i1fbza40XMpU9oIhb7FuOQXZDT10ICgTgna9gdowYJoLMQy8kaApN1qzoeZacDTaVD3ws-LJ4huvcJo7NeUzdbhWXlt1bj9tlA979TUdFGMNqzP-eMGn4L_NGJM62mhwHLVDP0fVAhW0qUBk8tF_SSZ5LZqGZ_DhP-Cln4PLR6s2LxWVaKoMwQKZ4GMMOPz5KAV1ylmdclannNWScx55sIxYRPyLM5DZkf8Ccy2k_A</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Badaroglu, M.</creator><creator>Donnay, S.</creator><creator>De Man, H.J.</creator><creator>Zinzius, Y.A.</creator><creator>Gielen, G.G.E.</creator><creator>Sansen, W.</creator><creator>Fonden, T.</creator><creator>Signell, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope></search><sort><creationdate>20030701</creationdate><title>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</title><author>Badaroglu, M. ; Donnay, S. ; De Man, H.J. ; Zinzius, Y.A. ; Gielen, G.G.E. ; Sansen, W. ; Fonden, T. ; Signell, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-d72e39e593108bfd0b0712771bdc05c202a377ff3680a13caa2f53a73ecac4d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Clocks</topic><topic>crosstalk</topic><topic>design</topic><topic>digital circuits</topic><topic>Energy consumption</topic><topic>Estimates</topic><topic>Frequency estimation</topic><topic>integrated circuit modeling</topic><topic>Local area networks</topic><topic>mixed analog-digital ICs</topic><topic>mixed-signal ics</topic><topic>Noise</topic><topic>Noise generators</topic><topic>Noise measurement</topic><topic>power distribution</topic><topic>Power system modeling</topic><topic>reduction</topic><topic>Resonance</topic><topic>resonance analysis</topic><topic>Semiconductor device modeling</topic><topic>substrate noise</topic><topic>Switching</topic><topic>System on chip</topic><topic>System-on-a-chip</topic><topic>Telecommunications</topic><topic>Wireless communication</topic><topic>Wireless LAN</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badaroglu, M.</creatorcontrib><creatorcontrib>Donnay, S.</creatorcontrib><creatorcontrib>De Man, H.J.</creatorcontrib><creatorcontrib>Zinzius, Y.A.</creatorcontrib><creatorcontrib>Gielen, G.G.E.</creatorcontrib><creatorcontrib>Sansen, W.</creatorcontrib><creatorcontrib>Fonden, T.</creatorcontrib><creatorcontrib>Signell, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badaroglu, M.</au><au>Donnay, S.</au><au>De Man, H.J.</au><au>Zinzius, Y.A.</au><au>Gielen, G.G.E.</au><au>Sansen, W.</au><au>Fonden, T.</au><au>Signell, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2003-07-01</date><risdate>2003</risdate><volume>38</volume><issue>7</issue><spage>1250</spage><epage>1260</epage><pages>1250-1260</pages><issn>0018-9200</issn><issn>1558-173X</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Substrate noise is a major obstacle for mixed-signal integration. While the power consumption scales linearly with the clock frequency, substrate noise does not have this scaling due to the resonances in the transfer function of the supply current to the substrate. This paper addresses a practical technique to estimate the substrate noise frequency spectrum of a large mixed-mode System-on-Chip (SoC) with multiple supplies and embedded memories. The results have been verified with substrate noise measurements on a 60-MHz 220-Kgates telecom SoC implemented in a 0.35 /spl mu/m CMOS process on an EPI-type substrate. We compute a linear chip-level substrate model together with the single-cycle representation of piecewise-linear noise sources of three supply regions used in this ASIC. Based on this model we accurately estimate the four major resonances in the substrate noise spectrum and their relative magnitudes with 2 dB relative error at the major resonance with respect to measurements. We also present substrate noise measurements at different operating modes of the WLAN receiver. These measurements show that output I/O buffers generate significant substrate noise where an increase of 44% is measured for substrate noise peak-to-peak value due to the additional simultaneous switching of six output I/O buffers with already fully switching datapath and two output I/Os.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2003.813254</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2003-07, Vol.38 (7), p.1250-1260 |
issn | 0018-9200 1558-173X 1558-173X |
language | eng |
recordid | cdi_proquest_miscellaneous_901716407 |
source | IEEE Electronic Library (IEL) |
subjects | Clocks crosstalk design digital circuits Energy consumption Estimates Frequency estimation integrated circuit modeling Local area networks mixed analog-digital ICs mixed-signal ics Noise Noise generators Noise measurement power distribution Power system modeling reduction Resonance resonance analysis Semiconductor device modeling substrate noise Switching System on chip System-on-a-chip Telecommunications Wireless communication Wireless LAN |
title | Modeling and experimental verification of substrate noise generation in a 220-Kgates WLAN system-on-chip with multiple supplies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A42%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20experimental%20verification%20of%20substrate%20noise%20generation%20in%20a%20220-Kgates%20WLAN%20system-on-chip%20with%20multiple%20supplies&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Badaroglu,%20M.&rft.date=2003-07-01&rft.volume=38&rft.issue=7&rft.spage=1250&rft.epage=1260&rft.pages=1250-1260&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2003.813254&rft_dat=%3Cproquest_RIE%3E2592331131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922674764&rft_id=info:pmid/&rft_ieee_id=1208476&rfr_iscdi=true |