Improving the threshold performance of maximum likelihood estimation of direction of arrival

We propose to improve the performance of some direction of arrival (DOA) estimators using array of sensors. We consider those maximum likelihood (ML) estimators that generate some DOA candidates and select one of them through an ML criterion. Our proposal modifies the candidate selection process sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2010-05, Vol.90 (5), p.1582-1590
Hauptverfasser: Krummenauer, R., Cazarotto, M., Lopes, A., Larzabal, P., Forster, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose to improve the performance of some direction of arrival (DOA) estimators using array of sensors. We consider those maximum likelihood (ML) estimators that generate some DOA candidates and select one of them through an ML criterion. Our proposal modifies the candidate selection process substituting the traditional sample covariance matrix by a new one computed after filtering the received data with an optimum noise reduction filter. Simulation results indicate an improvement of the performance at low signal-to-noise ratios (SNR) and a considerable reduction of the threshold SNR. The computation of the new selection cost function implies in a small increase in the overall computational effort.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2009.10.028