Improving the threshold performance of maximum likelihood estimation of direction of arrival
We propose to improve the performance of some direction of arrival (DOA) estimators using array of sensors. We consider those maximum likelihood (ML) estimators that generate some DOA candidates and select one of them through an ML criterion. Our proposal modifies the candidate selection process sub...
Gespeichert in:
Veröffentlicht in: | Signal processing 2010-05, Vol.90 (5), p.1582-1590 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose to improve the performance of some direction of arrival (DOA) estimators using array of sensors. We consider those maximum likelihood (ML) estimators that generate some DOA candidates and select one of them through an ML criterion. Our proposal modifies the candidate selection process substituting the traditional sample covariance matrix by a new one computed after filtering the received data with an optimum noise reduction filter. Simulation results indicate an improvement of the performance at low signal-to-noise ratios (SNR) and a considerable reduction of the threshold SNR. The computation of the new selection cost function implies in a small increase in the overall computational effort. |
---|---|
ISSN: | 0165-1684 1872-7557 |
DOI: | 10.1016/j.sigpro.2009.10.028 |