Parameter-uniformly convergent exponential spline difference scheme for singularly perturbed semilinear reaction–diffusion problems
We consider a Dirichlet boundary value problem for singularly perturbed semilinear reaction–diffusion equation. The problem is discretized using an exponential spline difference scheme derived on the basis of splines in tension on piecewise-uniform Shishkin type mesh. The convergence analysis is giv...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-12, Vol.71 (12), p.e1579-e1588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a Dirichlet boundary value problem for singularly perturbed semilinear reaction–diffusion equation. The problem is discretized using an exponential spline difference scheme derived on the basis of splines in tension on piecewise-uniform Shishkin type mesh. The convergence analysis is given and the method is shown to be almost second order accurate in the discrete maximum norm, uniformly in the perturbation parameter
ε
. Numerical experiments are conducted to demonstrate the theoretical results. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2009.01.210 |