Parameter-uniformly convergent exponential spline difference scheme for singularly perturbed semilinear reaction–diffusion problems

We consider a Dirichlet boundary value problem for singularly perturbed semilinear reaction–diffusion equation. The problem is discretized using an exponential spline difference scheme derived on the basis of splines in tension on piecewise-uniform Shishkin type mesh. The convergence analysis is giv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-12, Vol.71 (12), p.e1579-e1588
Hauptverfasser: Chandra Sekhara Rao, S., Kumar, Mukesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a Dirichlet boundary value problem for singularly perturbed semilinear reaction–diffusion equation. The problem is discretized using an exponential spline difference scheme derived on the basis of splines in tension on piecewise-uniform Shishkin type mesh. The convergence analysis is given and the method is shown to be almost second order accurate in the discrete maximum norm, uniformly in the perturbation parameter ε . Numerical experiments are conducted to demonstrate the theoretical results.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2009.01.210