Research progress in toughening modification of poly(lactic acid)
Renewable poly(lactic acid) (PLA) exhibits high strength and stiffness. PLA is fully biodegradable and has received great interest. However, the inherent brittleness of PLA largely impedes its wide applications. In this article, the recent progress in PLA toughening using various routes including pl...
Gespeichert in:
Veröffentlicht in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2011-08, Vol.49 (15), p.1051-1083 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Renewable poly(lactic acid) (PLA) exhibits high strength and stiffness. PLA is fully biodegradable and has received great interest. However, the inherent brittleness of PLA largely impedes its wide applications. In this article, the recent progress in PLA toughening using various routes including plasticization, copolymerization, and melt blending with flexible polymers, was reviewed in detail. PLA toughening, particularly modification of impact toughness through melt blending, was emphasized in this review. Reactive blending was shown to be especially effective in achieving high impact strength. The relationship between composition, morphology, and mechanical properties were summarized. Toughening mechanisms were also discussed. |
---|---|
ISSN: | 0887-6266 1099-0488 1099-0488 |
DOI: | 10.1002/polb.22283 |