Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points
In this paper we prove global convergence for first- and second-order stationary points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of quadratic (or linear) models built from evaluating the objective functi...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2009-01, Vol.20 (1), p.387-415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove global convergence for first- and second-order stationary points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of quadratic (or linear) models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds, but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/060673424 |