New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms

The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2010-03, Vol.90 (3), p.933-945
Hauptverfasser: Liu, Yue-Lin, Kou, Kit-Ian, Ho, Io-Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 945
container_issue 3
container_start_page 933
container_title Signal processing
container_volume 90
creator Liu, Yue-Lin
Kou, Kit-Ian
Ho, Io-Tong
description The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel transform (FRT) and scaling operations are considered as special cases of the LCT. In this paper, we structure certain types of non-bandlimited signals based on two ladder-shape filters designed in the LCT domain. Subsequently, these non-bandlimited signals are reconstructed from their samples together with the generalized sinc function, their parameter M-Hilbert transforms or their first derivatives and other information provided by the phase function of the nonlinear Fourier atom which is the boundary value of the Möbius transform, respectively. Simultaneously, mathematical characterizations for these non-bandlimited signals are given. Experimental results presented also offer a foundation for the sampling theorems established.
doi_str_mv 10.1016/j.sigpro.2009.09.030
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901702888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168409004216</els_id><sourcerecordid>901702888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-421d3d6b77b9eab7c7d1baacf27177b594aff7d44866a51ebea5b535e2fbec593</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw-5iKeuSds07UUQcVUQveg5TNPpmqVt1kzXP9_elF08CgMJw--9xzzGzqVYSCGLq_WC3GoT_CIVolpMk4kDNpOlThOtlD5ks4ipRBZlfsxOiNZCCJkVYsa-n_GLE_Sbzg0r3vrQbzvA6cMHPyQ1DE3nejdiw2PGAB1xIPLWwbT6cuM7j0qEwC1EgbPQ8THAQJMVj-rJZk8s_TY4DBxG39MpO2qjG57t3zl7W9693j4kTy_3j7c3T4nNinJM8lQ2WVPUWtcVQq2tbmQNYNtUy7hTVQ5tq5s8L4sClMQaQdUqU5i2NVpVZXN2ufON_XxskUbTO7LYdTCg35KphNQiLcsykvmOtMETBWzNJrgewo-Rwkw9m7XZ9Wymns00mYiyi30AULy-jcdbR3_aNJVailxH7nrHYbz2M_ZgyDocLDYuoB1N493_Qb_4Zplw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901702888</pqid></control><display><type>article</type><title>New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Liu, Yue-Lin ; Kou, Kit-Ian ; Ho, Io-Tong</creator><creatorcontrib>Liu, Yue-Lin ; Kou, Kit-Ian ; Ho, Io-Tong</creatorcontrib><description>The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel transform (FRT) and scaling operations are considered as special cases of the LCT. In this paper, we structure certain types of non-bandlimited signals based on two ladder-shape filters designed in the LCT domain. Subsequently, these non-bandlimited signals are reconstructed from their samples together with the generalized sinc function, their parameter M-Hilbert transforms or their first derivatives and other information provided by the phase function of the nonlinear Fourier atom which is the boundary value of the Möbius transform, respectively. Simultaneously, mathematical characterizations for these non-bandlimited signals are given. Experimental results presented also offer a foundation for the sampling theorems established.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2009.09.030</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Derivatives ; Exact sciences and technology ; Fourier analysis ; Fourier transforms ; Generalized sinc function ; Information, signal and communications theory ; Linear canonical transform ; Mathematical analysis ; Non-bandlimited signal ; Nonlinearity ; Parameter M-Hilbert transform ; Pattern recognition ; Sampling ; Sampling theorem ; Sampling, quantization ; Signal and communications theory ; Signal processing ; Telecommunications and information theory ; Transforms</subject><ispartof>Signal processing, 2010-03, Vol.90 (3), p.933-945</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-421d3d6b77b9eab7c7d1baacf27177b594aff7d44866a51ebea5b535e2fbec593</citedby><cites>FETCH-LOGICAL-c368t-421d3d6b77b9eab7c7d1baacf27177b594aff7d44866a51ebea5b535e2fbec593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165168409004216$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22171047$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Yue-Lin</creatorcontrib><creatorcontrib>Kou, Kit-Ian</creatorcontrib><creatorcontrib>Ho, Io-Tong</creatorcontrib><title>New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms</title><title>Signal processing</title><description>The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel transform (FRT) and scaling operations are considered as special cases of the LCT. In this paper, we structure certain types of non-bandlimited signals based on two ladder-shape filters designed in the LCT domain. Subsequently, these non-bandlimited signals are reconstructed from their samples together with the generalized sinc function, their parameter M-Hilbert transforms or their first derivatives and other information provided by the phase function of the nonlinear Fourier atom which is the boundary value of the Möbius transform, respectively. Simultaneously, mathematical characterizations for these non-bandlimited signals are given. Experimental results presented also offer a foundation for the sampling theorems established.</description><subject>Applied sciences</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Generalized sinc function</subject><subject>Information, signal and communications theory</subject><subject>Linear canonical transform</subject><subject>Mathematical analysis</subject><subject>Non-bandlimited signal</subject><subject>Nonlinearity</subject><subject>Parameter M-Hilbert transform</subject><subject>Pattern recognition</subject><subject>Sampling</subject><subject>Sampling theorem</subject><subject>Sampling, quantization</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw-5iKeuSds07UUQcVUQveg5TNPpmqVt1kzXP9_elF08CgMJw--9xzzGzqVYSCGLq_WC3GoT_CIVolpMk4kDNpOlThOtlD5ks4ipRBZlfsxOiNZCCJkVYsa-n_GLE_Sbzg0r3vrQbzvA6cMHPyQ1DE3nejdiw2PGAB1xIPLWwbT6cuM7j0qEwC1EgbPQ8THAQJMVj-rJZk8s_TY4DBxG39MpO2qjG57t3zl7W9693j4kTy_3j7c3T4nNinJM8lQ2WVPUWtcVQq2tbmQNYNtUy7hTVQ5tq5s8L4sClMQaQdUqU5i2NVpVZXN2ufON_XxskUbTO7LYdTCg35KphNQiLcsykvmOtMETBWzNJrgewo-Rwkw9m7XZ9Wymns00mYiyi30AULy-jcdbR3_aNJVailxH7nrHYbz2M_ZgyDocLDYuoB1N493_Qb_4Zplw</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Liu, Yue-Lin</creator><creator>Kou, Kit-Ian</creator><creator>Ho, Io-Tong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100301</creationdate><title>New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms</title><author>Liu, Yue-Lin ; Kou, Kit-Ian ; Ho, Io-Tong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-421d3d6b77b9eab7c7d1baacf27177b594aff7d44866a51ebea5b535e2fbec593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Generalized sinc function</topic><topic>Information, signal and communications theory</topic><topic>Linear canonical transform</topic><topic>Mathematical analysis</topic><topic>Non-bandlimited signal</topic><topic>Nonlinearity</topic><topic>Parameter M-Hilbert transform</topic><topic>Pattern recognition</topic><topic>Sampling</topic><topic>Sampling theorem</topic><topic>Sampling, quantization</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yue-Lin</creatorcontrib><creatorcontrib>Kou, Kit-Ian</creatorcontrib><creatorcontrib>Ho, Io-Tong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yue-Lin</au><au>Kou, Kit-Ian</au><au>Ho, Io-Tong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms</atitle><jtitle>Signal processing</jtitle><date>2010-03-01</date><risdate>2010</risdate><volume>90</volume><issue>3</issue><spage>933</spage><epage>945</epage><pages>933-945</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel transform (FRT) and scaling operations are considered as special cases of the LCT. In this paper, we structure certain types of non-bandlimited signals based on two ladder-shape filters designed in the LCT domain. Subsequently, these non-bandlimited signals are reconstructed from their samples together with the generalized sinc function, their parameter M-Hilbert transforms or their first derivatives and other information provided by the phase function of the nonlinear Fourier atom which is the boundary value of the Möbius transform, respectively. Simultaneously, mathematical characterizations for these non-bandlimited signals are given. Experimental results presented also offer a foundation for the sampling theorems established.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2009.09.030</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2010-03, Vol.90 (3), p.933-945
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_901702888
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Derivatives
Exact sciences and technology
Fourier analysis
Fourier transforms
Generalized sinc function
Information, signal and communications theory
Linear canonical transform
Mathematical analysis
Non-bandlimited signal
Nonlinearity
Parameter M-Hilbert transform
Pattern recognition
Sampling
Sampling theorem
Sampling, quantization
Signal and communications theory
Signal processing
Telecommunications and information theory
Transforms
title New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20sampling%20formulae%20for%20non-bandlimited%20signals%20associated%20with%20linear%20canonical%20transform%20and%20nonlinear%20Fourier%20atoms&rft.jtitle=Signal%20processing&rft.au=Liu,%20Yue-Lin&rft.date=2010-03-01&rft.volume=90&rft.issue=3&rft.spage=933&rft.epage=945&rft.pages=933-945&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2009.09.030&rft_dat=%3Cproquest_cross%3E901702888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901702888&rft_id=info:pmid/&rft_els_id=S0165168409004216&rfr_iscdi=true