New sampling formulae for non-bandlimited signals associated with linear canonical transform and nonlinear Fourier atoms

The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2010-03, Vol.90 (3), p.933-945
Hauptverfasser: Liu, Yue-Lin, Kou, Kit-Ian, Ho, Io-Tong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sampling theory is basic and crucial in engineering sciences. On the other hand, the linear canonical transform (LCT) is also of great power in optics, filter design, radar system analysis and pattern recognition, etc. The Fourier transform (FT), the fractional Fourier transform (FRFT), Fresnel transform (FRT) and scaling operations are considered as special cases of the LCT. In this paper, we structure certain types of non-bandlimited signals based on two ladder-shape filters designed in the LCT domain. Subsequently, these non-bandlimited signals are reconstructed from their samples together with the generalized sinc function, their parameter M-Hilbert transforms or their first derivatives and other information provided by the phase function of the nonlinear Fourier atom which is the boundary value of the Möbius transform, respectively. Simultaneously, mathematical characterizations for these non-bandlimited signals are given. Experimental results presented also offer a foundation for the sampling theorems established.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2009.09.030