Linear choosability of sparse graphs
A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted lc ℓ ( G ) , of sparse graphs. The maximum average degree of a graph G , denoted m a d ( G ) , is the maximum of the average degrees of al...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2011-09, Vol.311 (17), p.1910-1917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted
lc
ℓ
(
G
)
, of sparse graphs. The maximum average degree of a graph
G
, denoted
m
a
d
(
G
)
, is the maximum of the average degrees of all subgraphs of
G
. It is clear that any graph
G
with maximum degree
Δ
(
G
)
satisfies
lc
ℓ
(
G
)
≥
⌈
Δ
(
G
)
/
2
⌉
+
1
. In this paper, we prove the following results: (1) if
mad
(
G
)
<
12
/
5
and
Δ
(
G
)
≥
3
, then
lc
ℓ
(
G
)
=
⌈
Δ
(
G
)
/
2
⌉
+
1
, and we give an infinite family of examples to show that this result is best possible; (2) if
mad
(
G
)
<
3
and
Δ
(
G
)
≥
9
, then
lc
ℓ
(
G
)
≤
⌈
Δ
(
G
)
/
2
⌉
+
2
, and we give an infinite family of examples to show that the bound on
mad
(
G
)
cannot be increased in general; (3) if
G
is planar and has girth at least 5, then
lc
ℓ
(
G
)
≤
⌈
Δ
(
G
)
/
2
⌉
+
4
. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.05.017 |