Synthesis of γ-CoOOH and its effects on the positive electrodes of nickel batteries

High-valence (3.40) cobalt compounds were synthesized by a chemical precipitation (CP) method. Nickel hydroxide electrodes were then prepared using the synthesized compounds as conducting agents. The effects of high-valence cobalt additions on electrode properties, such as charge–discharge character...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2009-03, Vol.34 (5), p.2435-2439
Hauptverfasser: Chang, Zhaorong, Li, Huaji, Tang, Hongwei, Yuan, Xiao Zi, Wang, Haijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-valence (3.40) cobalt compounds were synthesized by a chemical precipitation (CP) method. Nickel hydroxide electrodes were then prepared using the synthesized compounds as conducting agents. The effects of high-valence cobalt additions on electrode properties, such as charge–discharge characteristics, electrode reaction reversibility, and cyclic voltammetric performance, were investigated by cyclic voltammetry, X-ray diffraction (XRD), and resistance measurement. The results demonstrate that the addition of high-valence cobalt helps to form a conductive network in the electrode, thus greatly increasing the cycling performance and simultaneously accomplishing an extremely high utilization of the active material in the positive electrode. For comparison, active materials of Co(OH) 2, β-CoOOH, and CoO were also included in the test. It was found that cobalt with a valence of 3.40 has a higher performance within one cycle. The utilization of the active material can reach 100.6% at a discharge rate of 0.2 C.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2009.01.033