Multitemporal C-band radar measurements on wheat fields

This paper investigates the relationship between C-band backscatter measurements and wheat biomass and the underlying soil moisture content. It aims to define strategies for retrieval algorithms with a view to using satellite C-band synthetic aperture radar (SAR) data to monitor wheat growth. The st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2003-07, Vol.41 (7), p.1551-1560
Hauptverfasser: Mattia, F., Le Toan, T., Picard, G., Posa, F.I., D'Alessio, A., Notarnicola, C., Gatti, A.M., Rinaldi, M., Satalino, G., Pasquariello, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the relationship between C-band backscatter measurements and wheat biomass and the underlying soil moisture content. It aims to define strategies for retrieval algorithms with a view to using satellite C-band synthetic aperture radar (SAR) data to monitor wheat growth. The study is based on a ground-based scatterometer experiment conducted on a wheat field at the Matera site in Italy during the 2001 growing season. From March to June 2001, eight C-band scatterometer acquisitions at horizontal-horizontal and vertical-vertical polarization, with incidence angles ranging from 23/spl deg/ to 60/spl deg/, were taken. At the same time, soil moisture, wheat biomass, and canopy structure were collected. The paper describes the experiment and investigates the radar sensitivity to biophysical parameters at different polarizations and incidence angles, and at different wheat phenological stages. Based on the experimental results, the retrieval of wheat biomass and soil moisture content using Advanced Synthetic Aperture Radar data is discussed.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2003.813531