Structure and dynamics of polymer chains in hydrophilic nanocomposites

Poly(hexa(ethylene glycol) methacrylate)/sodium montmorillonite, (PHEGMA/Na+‐MMT) nanocomposites with varying composition were synthesized utilizing melt intercalation and solution mixing. Intercalated hybrids were obtained but, for the solution prepared hybrids, the equilibrium structure could only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2010-07, Vol.48 (14), p.1658-1667
Hauptverfasser: Fotiadou, S., Chrissopoulou, K., Frick, B., Anastasiadis, S. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(hexa(ethylene glycol) methacrylate)/sodium montmorillonite, (PHEGMA/Na+‐MMT) nanocomposites with varying composition were synthesized utilizing melt intercalation and solution mixing. Intercalated hybrids were obtained but, for the solution prepared hybrids, the equilibrium structure could only be reached following thermal annealing. At equilibrium, all nanocomposites showed the same interlayer distance independent of the hybrid composition. For low polymer content nanocomposites, where all polymer chains reside within the inorganic galleries, the glass transition temperature of PHEGMA was completely suppressed. Quasielastic neutron scattering was utilized to investigate the effect of severe confinement on the dynamics of the intercalated polymer chains. Both elastic and quasielastic measurements were performed and showed that the confined system exhibits a much weaker temperature and wavevector dependence of the elastic intensity and of the respective relaxation times. The segmental mean square displacement in confinement begins to increase at temperatures well below the bulk polymer glass transition, indicating enhanced mobility compared with the pure polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1658–1667, 2010
ISSN:0887-6266
1099-0488
1099-0488
DOI:10.1002/polb.21974