Ordered array of diamond ultramicroband electrodes for electrochemical analysis

Boron-doped diamond ultramicroband arrays with different array densities and interelement spacings were fabricated using silicon technology and selective diamond deposition (SAD) technique to yield microvoltammetric electrodes. The electroactive ultramicroband elements were designed with one microsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diamond and related materials 2008-03, Vol.17 (3), p.240-246
Hauptverfasser: Soh, K.L., Kang, W.P., Davidson, J.L., Wong, Y.M., Cliffel, D.E., Swain, G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Boron-doped diamond ultramicroband arrays with different array densities and interelement spacings were fabricated using silicon technology and selective diamond deposition (SAD) technique to yield microvoltammetric electrodes. The electroactive ultramicroband elements were designed with one microscopic critical dimension to impart microelectrode behavior while the other dimension was made larger to yield an increase in signal current. Cyclic voltammetry studies in this work showed that with sufficient interelement separation, the ultramicroband arrays display sigmoidal pseudo-steady-state cyclic voltammograms characteristic of microband electrodes. The ultramicroband arrays yielded higher faradaic current per unit area, than either square ultramicroelectrode array or conventional planar diamond electrode from earlier reported work. This is due to enhanced mass transport to the ultramicroband elements at slow scan rates. Larger current density and higher signal-to-noise (S/N) ratio leads to better limits of detection, making it possible to fabricate a more sensitive electrode for applications such as electroanalysis, electrocatalysis, trace element analysis, mechanistic and fast transfer kinetics studies, electrochemistry in highly resistive media, as well as sensors in flow and biological system.
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2007.12.023