Windowed Fourier transform of two-dimensional quaternionic signals

In this paper, we generalize the classical windowed Fourier transform (WFT) to quaternion-valued signals, called the quaternionic windowed Fourier transform (QWFT). Using the spectral representation of the quaternionic Fourier transform (QFT), we derive several important properties such as reconstru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2010-06, Vol.216 (8), p.2366-2379
Hauptverfasser: Bahri, Mawardi, Hitzer, Eckhard S.M., Ashino, Ryuichi, Vaillancourt, Rémi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize the classical windowed Fourier transform (WFT) to quaternion-valued signals, called the quaternionic windowed Fourier transform (QWFT). Using the spectral representation of the quaternionic Fourier transform (QFT), we derive several important properties such as reconstruction formula, reproducing kernel, isometry, and orthogonality relation. Taking the Gaussian function as window function we obtain quaternionic Gabor filters which play the role of coefficient functions when decomposing the signal in the quaternionic Gabor basis. We apply the QWFT properties and the (right-sided) QFT to establish a Heisenberg type uncertainty principle for the QWFT. Finally, we briefly introduce an application of the QWFT to a linear time-varying system.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2010.03.082