Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation
In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2010-01, Vol.32 (4), p.1740-1760 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1760 |
---|---|
container_issue | 4 |
container_start_page | 1740 |
container_title | SIAM journal on scientific computing |
container_volume | 32 |
creator | Chen, Chang-Ming Liu, F Anh, V Turner, I |
description | In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fourier analysis. Another improved numerical scheme with second order temporal accuracy and fourth order spatial accuracy is also proposed. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/090771715 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901685309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901685309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-2f29596e34fb9d2082b70250da3f2f17bb50f88afb3acd038e74e0542072bfd03</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqUw8A8sFsQQODtxbY9VVShSRYcCa-Q4NnWVxK2dCPXf46qIgelO9747vXsI3RJ4JCTnTyCBc8IJO0MjApJlnEh-fuwnRSYoZ5foKsYtAJkUko6QehtaE5xWDV7rjWlNxN-u3-CF-9rg9U71LilTrYeg9AFbH7DCnyo4VTUmW4XaBDztfKsaP0S8HqraWTtE5zs83w9p23fX6MKqJpqb3zpGH8_z99kiW65eXmfTZaapEH1GLZVMTkxe2ErWFAStOFAGtcottYRXFQMrhLJVrnQNuTC8MMAKCpxWNg3G6P50dxf8fjCxL1sXtWka1ZlkrpTpZcFykIm8-0du_RC6ZK4UAgjwhCbo4QTp4GMMxpa74FoVDiWB8hh1-Rd1_gMe2m_G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880107901</pqid></control><display><type>article</type><title>Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation</title><source>SIAM Journals Online</source><creator>Chen, Chang-Ming ; Liu, F ; Anh, V ; Turner, I</creator><creatorcontrib>Chen, Chang-Ming ; Liu, F ; Anh, V ; Turner, I</creatorcontrib><description>In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fourier analysis. Another improved numerical scheme with second order temporal accuracy and fourth order spatial accuracy is also proposed. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/090771715</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Computation ; Convergence ; Fourier analysis ; Mathematical analysis ; Numerical analysis ; Stability ; Studies ; Temporal logic</subject><ispartof>SIAM journal on scientific computing, 2010-01, Vol.32 (4), p.1740-1760</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-2f29596e34fb9d2082b70250da3f2f17bb50f88afb3acd038e74e0542072bfd03</citedby><cites>FETCH-LOGICAL-c288t-2f29596e34fb9d2082b70250da3f2f17bb50f88afb3acd038e74e0542072bfd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Chang-Ming</creatorcontrib><creatorcontrib>Liu, F</creatorcontrib><creatorcontrib>Anh, V</creatorcontrib><creatorcontrib>Turner, I</creatorcontrib><title>Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation</title><title>SIAM journal on scientific computing</title><description>In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fourier analysis. Another improved numerical scheme with second order temporal accuracy and fourth order spatial accuracy is also proposed. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis. [PUBLICATION ABSTRACT]</description><subject>Accuracy</subject><subject>Computation</subject><subject>Convergence</subject><subject>Fourier analysis</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Stability</subject><subject>Studies</subject><subject>Temporal logic</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkDFPwzAQhS0EEqUw8A8sFsQQODtxbY9VVShSRYcCa-Q4NnWVxK2dCPXf46qIgelO9747vXsI3RJ4JCTnTyCBc8IJO0MjApJlnEh-fuwnRSYoZ5foKsYtAJkUko6QehtaE5xWDV7rjWlNxN-u3-CF-9rg9U71LilTrYeg9AFbH7DCnyo4VTUmW4XaBDztfKsaP0S8HqraWTtE5zs83w9p23fX6MKqJpqb3zpGH8_z99kiW65eXmfTZaapEH1GLZVMTkxe2ErWFAStOFAGtcottYRXFQMrhLJVrnQNuTC8MMAKCpxWNg3G6P50dxf8fjCxL1sXtWka1ZlkrpTpZcFykIm8-0du_RC6ZK4UAgjwhCbo4QTp4GMMxpa74FoVDiWB8hh1-Rd1_gMe2m_G</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Chen, Chang-Ming</creator><creator>Liu, F</creator><creator>Anh, V</creator><creator>Turner, I</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation</title><author>Chen, Chang-Ming ; Liu, F ; Anh, V ; Turner, I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-2f29596e34fb9d2082b70250da3f2f17bb50f88afb3acd038e74e0542072bfd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Computation</topic><topic>Convergence</topic><topic>Fourier analysis</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Stability</topic><topic>Studies</topic><topic>Temporal logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chang-Ming</creatorcontrib><creatorcontrib>Liu, F</creatorcontrib><creatorcontrib>Anh, V</creatorcontrib><creatorcontrib>Turner, I</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chang-Ming</au><au>Liu, F</au><au>Anh, V</au><au>Turner, I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>32</volume><issue>4</issue><spage>1740</spage><epage>1760</epage><pages>1740-1760</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fourier analysis. Another improved numerical scheme with second order temporal accuracy and fourth order spatial accuracy is also proposed. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090771715</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2010-01, Vol.32 (4), p.1740-1760 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_miscellaneous_901685309 |
source | SIAM Journals Online |
subjects | Accuracy Computation Convergence Fourier analysis Mathematical analysis Numerical analysis Stability Studies Temporal logic |
title | Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Schemes%20with%20High%20Spatial%20Accuracy%20for%20a%20Variable-Order%20Anomalous%20Subdiffusion%20Equation&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Chen,%20Chang-Ming&rft.date=2010-01-01&rft.volume=32&rft.issue=4&rft.spage=1740&rft.epage=1760&rft.pages=1740-1760&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/090771715&rft_dat=%3Cproquest_cross%3E901685309%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880107901&rft_id=info:pmid/&rfr_iscdi=true |