Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation
In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2010-01, Vol.32 (4), p.1740-1760 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a variable-order anomalous subdiffusion equation. A numerical scheme with first order temporal accuracy and fourth order spatial accuracy for the equation is proposed. The convergence, stability, and solvability of the numerical scheme are discussed via the technique of Fourier analysis. Another improved numerical scheme with second order temporal accuracy and fourth order spatial accuracy is also proposed. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1064-8275 1095-7197 |
DOI: | 10.1137/090771715 |