An optimized EASI algorithm

This paper addresses the problem of blind source separation and presents a kind of optimized equivariant adaptive separation via independence (EASI) algorithms. According to the cumulant based approximation to the mutual information contrast function, the EASI learning rule is optimized by multiplyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2009-03, Vol.89 (3), p.333-338
Hauptverfasser: Ye, Jimin, Jin, Haihong, Lou, Shuntian, You, Kejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the problem of blind source separation and presents a kind of optimized equivariant adaptive separation via independence (EASI) algorithms. According to the cumulant based approximation to the mutual information contrast function, the EASI learning rule is optimized by multiplying the symmetric part with an optimal time variant weight coefficient. Simulation results show the proposed optimized EASI algorithms outperform the existing algorithms in convergent speed and steady-state accuracy.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2008.08.015