Space and time optimal parallel sequence alignments

We present the first space and time optimal parallel algorithm for the pairwise sequence alignment problem, a fundamental problem in computational biology. This problem can be solved sequentially in O(mn) time and O(m+n) space, where m and n are the lengths of the sequences to be aligned. The fastes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2004-12, Vol.15 (12), p.1070-1081
Hauptverfasser: Rajko, S., Aluru, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present the first space and time optimal parallel algorithm for the pairwise sequence alignment problem, a fundamental problem in computational biology. This problem can be solved sequentially in O(mn) time and O(m+n) space, where m and n are the lengths of the sequences to be aligned. The fastest known parallel space-optimal algorithm for pairwise sequence alignment takes optimal O(m+n/p) space, but suboptimal O((m+n)/sup 2//p) time, where p is the number of processors. On the other hand, the most space economical time-optimal parallel algorithm takes O(mn/p) time, but O(m+n/p) space. We close this gap by presenting an algorithm that achieves both time and space optimality, i.e. requires only O((m+n)/p) space and O(mn/p) time. We also present an experimental evaluation of the proposed algorithm on an IBM xSeries cluster. Although presented in the context of full sequence alignments, our algorithm is applicable to other alignment problems in computational biology including local alignments and syntenic alignments. It is also a useful addition to the range of techniques available for parallel dynamic programming.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2004.86