A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles

A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2010-01, Vol.32 (2), p.875-893
Hauptverfasser: da Veiga, L. Beirão, Lipnikov, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 2
container_start_page 875
container_title SIAM journal on scientific computing
container_volume 32
creator da Veiga, L. Beirão
Lipnikov, K.
description A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1 - P0 (and the "conditionally stable" Q1 - P0) finite element is shown to be fully stable when applied to a large range of polygonal meshes. Moreover, we show how to stabilize the remaining cases by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/090767029
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_901682275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2411595221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-19456f5791472d481ba433d0b945eae26216e950a52e053ac0ca7e99809db9903</originalsourceid><addsrcrecordid>eNpdkE9LAzEQxYMoWKsHv0HwIh5WJ9k_SY61Vi1UFKrnJZudtVt3m5pkEf30RioePM1j5sfw3iPklMElY6m4AgWiEMDVHhkxUHkimBL7P7rIEslFfkiOvF8DsCJTfETmE_rQ9hhaQ29ab1xUXzq0dkNtQ8MK6TLYN_T0ydmqw55-tGFFl9ihCVjTWf2K9Hqo4skfk4NGdx5PfueYvNzOnqf3yeLxbj6dLBLDpQwJU1leNLlQLBO8ziSrdJamNVRxjxp5wVmBKgedc4Q81QaMFqiUBFVXSkE6Jue7v1tn3wf0oeyjcew6vUE7-FLFaJLHpJE8-0eu7eA20VwpJYCI9bAIXewg46z3Dpty69peu8-SQflTaflXafoNUVFlkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>880070951</pqid></control><display><type>article</type><title>A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles</title><source>SIAM Journals Online</source><creator>da Veiga, L. Beirão ; Lipnikov, K.</creator><creatorcontrib>da Veiga, L. Beirão ; Lipnikov, K.</creatorcontrib><description>A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1 - P0 (and the "conditionally stable" Q1 - P0) finite element is shown to be fully stable when applied to a large range of polygonal meshes. Moreover, we show how to stabilize the remaining cases by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/090767029</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Bubbles ; Combinatorics ; Discretization ; Finite difference method ; Finite element analysis ; Finite element method ; Fluid flow ; Mathematical analysis ; Numerical analysis ; Polygons ; Polyhedra ; Polyhedrons ; Strategy ; Studies</subject><ispartof>SIAM journal on scientific computing, 2010-01, Vol.32 (2), p.875-893</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-19456f5791472d481ba433d0b945eae26216e950a52e053ac0ca7e99809db9903</citedby><cites>FETCH-LOGICAL-c288t-19456f5791472d481ba433d0b945eae26216e950a52e053ac0ca7e99809db9903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,3186,27931,27932</link.rule.ids></links><search><creatorcontrib>da Veiga, L. Beirão</creatorcontrib><creatorcontrib>Lipnikov, K.</creatorcontrib><title>A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles</title><title>SIAM journal on scientific computing</title><description>A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1 - P0 (and the "conditionally stable" Q1 - P0) finite element is shown to be fully stable when applied to a large range of polygonal meshes. Moreover, we show how to stabilize the remaining cases by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. [PUBLICATION ABSTRACT]</description><subject>Bubbles</subject><subject>Combinatorics</subject><subject>Discretization</subject><subject>Finite difference method</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Numerical analysis</subject><subject>Polygons</subject><subject>Polyhedra</subject><subject>Polyhedrons</subject><subject>Strategy</subject><subject>Studies</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkE9LAzEQxYMoWKsHv0HwIh5WJ9k_SY61Vi1UFKrnJZudtVt3m5pkEf30RioePM1j5sfw3iPklMElY6m4AgWiEMDVHhkxUHkimBL7P7rIEslFfkiOvF8DsCJTfETmE_rQ9hhaQ29ab1xUXzq0dkNtQ8MK6TLYN_T0ydmqw55-tGFFl9ihCVjTWf2K9Hqo4skfk4NGdx5PfueYvNzOnqf3yeLxbj6dLBLDpQwJU1leNLlQLBO8ziSrdJamNVRxjxp5wVmBKgedc4Q81QaMFqiUBFVXSkE6Jue7v1tn3wf0oeyjcew6vUE7-FLFaJLHpJE8-0eu7eA20VwpJYCI9bAIXewg46z3Dpty69peu8-SQflTaflXafoNUVFlkQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>da Veiga, L. Beirão</creator><creator>Lipnikov, K.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles</title><author>da Veiga, L. Beirão ; Lipnikov, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-19456f5791472d481ba433d0b945eae26216e950a52e053ac0ca7e99809db9903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bubbles</topic><topic>Combinatorics</topic><topic>Discretization</topic><topic>Finite difference method</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Numerical analysis</topic><topic>Polygons</topic><topic>Polyhedra</topic><topic>Polyhedrons</topic><topic>Strategy</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Veiga, L. Beirão</creatorcontrib><creatorcontrib>Lipnikov, K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Veiga, L. Beirão</au><au>Lipnikov, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>32</volume><issue>2</issue><spage>875</spage><epage>893</epage><pages>875-893</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1 - P0 (and the "conditionally stable" Q1 - P0) finite element is shown to be fully stable when applied to a large range of polygonal meshes. Moreover, we show how to stabilize the remaining cases by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090767029</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2010-01, Vol.32 (2), p.875-893
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_901682275
source SIAM Journals Online
subjects Bubbles
Combinatorics
Discretization
Finite difference method
Finite element analysis
Finite element method
Fluid flow
Mathematical analysis
Numerical analysis
Polygons
Polyhedra
Polyhedrons
Strategy
Studies
title A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mimetic%20Discretization%20of%20the%20Stokes%20Problem%20with%20Selected%20Edge%20Bubbles&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=da%20Veiga,%20L.%20Beir%C3%A3o&rft.date=2010-01-01&rft.volume=32&rft.issue=2&rft.spage=875&rft.epage=893&rft.pages=875-893&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/090767029&rft_dat=%3Cproquest_cross%3E2411595221%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=880070951&rft_id=info:pmid/&rfr_iscdi=true