A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles

A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2010-01, Vol.32 (2), p.875-893
Hauptverfasser: da Veiga, L. Beirão, Lipnikov, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The mimetic discretization methodology can be understood as a generalization of the finite element method to meshes with general polygons/polyhedrons. In this paper, the mimetic generalization of the unstable P1 - P0 (and the "conditionally stable" Q1 - P0) finite element is shown to be fully stable when applied to a large range of polygonal meshes. Moreover, we show how to stabilize the remaining cases by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. [PUBLICATION ABSTRACT]
ISSN:1064-8275
1095-7197
DOI:10.1137/090767029