The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells

Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2010-11, Vol.35 (21), p.12020-12028
Hauptverfasser: Zhang, Yimin, Merrill, Matthew D., Logan, Bruce E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microbial electrolysis cells (MECs) provide a high-yield method for producing hydrogen from renewable biomass. One challenge for commercialization of the technology is a low-cost and highly efficient cathode. Stainless steel (SS) is very inexpensive, and cathodes made of this material with high specific surface areas can achieve performance similar to carbon cathodes containing a platinum catalyst in MECs. SS mesh cathodes were examined here as a method to provide a higher surface area material than flat plate electrodes. Cyclic voltammetry tests showed that the electrochemically active surface area of certain sized mesh could be three times larger than a flat sheet. The relative performance of SS mesh in linear sweep voltammetry at low bubble coverages (low current densities) was also consistent with performance on this basis in MEC tests. The best SS mesh size (#60) in MEC tests had a relatively thick wire size (0.02 cm), a medium pore size (0.02 cm), and a specific surface area of 66 m 2/m 3. An applied voltage of 0.9 V produced a high hydrogen recovery (98 ± 4%) and overall energy efficiency (74 ± 4%), with a hydrogen production rate of 2.1 ± 0.3 m 3H 2/m 3d (current density of 8.08 A/m 2, volumetric current density of 188 ± 19 A/m 3). These studies show that SS in mesh format shows great promise for the development of lower cost MEC systems for hydrogen production.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2010.08.064